E. M. PHILLIPS, T. MESGANAW, A. PATEL, S. DUTTWYLER, B. Q. MERCADO, K. N. HOUK,*
J. A. ELLMAN* (YALE UNIVERSITY, NEW HAVEN AND UNIVERSITY OF CALIFORNIA, LOS
ANGELES, USA)

Synthesis of *ent*-Ketorfanol via a C–H Alkenylation/Torquoselective 6π Eletrocyclization Cascade *Angew. Chem. Int. Ed.* **2015**, *54*, 12044–12048.

Synthesis of ent-Ketorfanol

Significance: The synthesis of *ent*-ketorfanol depicted features a rhodium-catalyzed intramolecular C–H alkenylation/ 6π electrocyclization cascade ($\mathbf{E} \to \mathbf{G} \to \mathbf{H}$) that provides the fused bicyclic 1,2-dihydropyridine \mathbf{H} as a key intermediate. The torquoselectivity of the electrocyclization is a consequence of remote asymmetric induction provided by the isopropylidene-protected diol. Another noteworthy facet is the acid-catalyzed pinacol rearrangement/Friedel–Crafts alkylation ($\mathbf{I} \to \mathbf{J}$).

SYNFACTS Contributors: Philip Kocienski Synfacts 2016, 12(1), 0001 Published online: 16.12.2015 **DOI:** 10.1055/s-0035-1560992; **Reg-No.:** K06815SF **Comment:** Ketorfanol is a semisynthetic opioid that was previously derived from morphine or naltrexone. It was never marketed. Because both enantiomers of diol **B** are readily available by Sharpless asymmetric dihydroxylation, both ketorfanol and *ent*-ketorfanol can be prepared in eleven steps and 9% overall yield without recourse to opiate modification. Note the use of the chlorine substituent in **I** to direct the regioselectivity of the Friedel–Crafts cyclization.

Category

Synthesis of Natural Products and Potential Drugs

Key words

ent-ketorfanol

C-H alkenylation

electrocyclization

pinacol rearrangement

Friedel-Crafts alkylation

rhodium catalysis

torquoselective cyclization

