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Abstract A simple L-proline-catalysed regio- and diastereoselective
synthesis of spiro[pyrido[2,3-d]pyrimidin-2-amine-6,5′-pyrimidines] in
water through a strategy of one-pot multicomponent domino reaction
of 2,6-diaminopyrimidin-4-one, aldehydes and barbituric acids is de-
scribed. The notable advantages of the protocol are operational sim-
plicity, mild reaction conditions, simple purification process involving
no chromatographic techniques, wide substrate scope, and high yields.
The method delivers the desired product within short reaction time and
with a diastereoselectivity of 61:39 to 100:0, which makes the protocol
highly attractive.

Key words spiro compounds, organocatalysis, multi-component reac-
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The development of simple, efficient, environmentally
benign and economically viable reaction protocols with
high regio- and diastereoselectivity continues to be an im-
portant area of research. In this context, development of
multicomponent domino reactions have become an in-
creasingly powerful tool in organic synthesis because the
protocol allows flexible, convergent, atom- and step-
economic synthesis.1 Furthermore, due to the adverse im-
plications of organic solvents, efforts to design efficient
synthetic methodology in aqueous medium are of interest.
Water can also regulate the course of a reaction by its
unique physiochemical properties; polarity, hydrogen
bonding, hydrophobic effect and trans-phase interactions.2

In this area, organocatalysis has emerged as a powerful
strategy, whereby chemical reactions are accelerated by the
application of small organic molecules in substoichiometric
amounts. Ideal organocatalysts are easy to handle, air- and

water-stable, relatively non-toxic, work under mild condi-
tions, are easily separated from the crude reaction mixture
and overcome the major drawbacks of heterogeneous cata-
lysts, such as metal-leaching, long reaction times and struc-
tural stability.3

Pyrido[2,3-d]pyrimidines and their spiro analogues ex-
hibit a wide range of biological activities such as antibacte-
rial,4 antitumor,5 antihypertensive,6 cardiotonic,7 antiprolif-
erative,8 vasodilator,9 antifolating,10 antimalarial,11 analge-
sic12 and antifungal13 properties. Furthermore, the presence
of the spiro-carbon atom provides structural rigidity, can
induce steric strain and helps the parent molecule to under-
go thermal, base- or acid-promoted rearrangements, often
resulting in new and unexpected products.14

Quiroga et al. reported a triethylamine-catalysed syn-
thesis of pyridopyrimidin-spirocyclohexanotriones from 6-
aminopyrimidines, dimedone and formaldehyde under mi-
crowave irradiation but with no diastereoselectivity.15 Ba-
rua and Bhuyan developed a two-step procedure for the
synthesis of spiro-substituted pyrido[2,3-d]pyrimidines.
However, the use of organic solvents and piperidine and di-
isopropylethylamine (DIPEA) as catalysts reduce its green
credentials.16 In 2009, Jiang et al. developed an elegant pro-
cedure for the synthesis of 6-spiro-substituted pyrido[2,3-
d]pyrimidines from 2,6-diaminopyrimidin-4-one, alde-
hydes and barbituric acids under microwave irradiation.
However, this procedure is compatible only with aryl alde-
hydes.17 Herein, we report a new and simple L-proline-cata-
lysed regio- and diastereoselective synthesis of spiro[pyri-
do[2,3-d]pyrimidin-2-amine-6,5′-pyrimidines] by one-pot
multicomponent domino reaction of 2,6-diaminopyrimi-
dine-4-one, aldehydes and barbituric acids in water with
diastereoselectivity from 61:39 to 100:0 under mild reac-
tion conditions (Scheme 1).18
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Scheme 1  Synthesis of spiro[pyrido[2,3-d]pyrimidin-2-amine-6,5′-pyrimidines]

The present work is the result of our continuous efforts
on the development of new protocols involving greener
methodologies for the synthesis of biologically active het-
erocyclic molecules.19 L-Proline is the catalyst of choice be-
cause it is not only a mild and readily available bifunctional
organocatalyst but it also catalyses a range of reactions by
its different activation modes such as by enamine and imin-
ium cation formation. Moreover, it has been described as
the simplest molecule that can facilitate chemical transfor-
mations similar to those catalysed by complex enzymes and
has shown remarkable efficiency in promoting diverse syn-
thetic transformations including enantio- and diastereose-
lective aldol, Mannich, and Michael reactions.20

Initially, a mixture of 2,6-diaminopyrimidin-4-one (1, 1
mmol), benzaldehyde (2a, 2 mmol) and 1,3-dimethylbarbi-
turic acid (3a, 1 mmol) was stirred at room temperature and
only 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-
trione was isolated along with the unreacted starting mate-
rials (Table 1, entry 1). With this observation, we stirred a

mixture of 1,3-dimethylbarbituric acid (3, 1 mmol) and
benzaldehyde (2a, 1 mmol) at room temperature until the
generation of 5-benzylidene-1,3-dimethylpyrimidine-
2,4,6(1H,3H,5H)-trione was indicated by TLC. Next, another
1 mmol of benzaldehyde (2a) followed by 1 mmol of 2,6-di-
aminopyrimidin-4-one (1) were added to the reaction mix-
ture and the reaction was heated to reflux, which resulted
in the formation of 2-amino-1′,3′-dimethyl-5,7-diphenyl-
7,8-dihydro-1′H,3H-spiro[pyrido[2,3-d]pyrimidine-6,5′-py-
rimidine]-2′,4,4′,6′(3′H,5H)-tetraone (4aa) in 70% yield in 3
h, with 84:16 diastereoselectivity (entry 2). However, when
the same reaction was carried out using 10 mol% L-proline,
the yield of 4aa increased to 80% and diastereoselectivity
increased to 90:10 in 1.5 h (entry 3). Further increasing the
catalyst load to 20 mol% led to 4aa being isolated in 95%
yield within 45 min with 97:3 diastereoselectivity (entry
4). No further improvement in yield or diastereoselectivity
was observed when the catalyst load was increased to 30
mol% (entry 5). To assess the effect of solvent, when the re-
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Table 1  Optimization of the Reactiona

Entry Catalyst (mol%) Solventb Time (min) Yield (%)c cis/transd

RT Reflux

1 – H2O 720 0 0 –

2 – H2O 30 150 70 84:16

3 L-Proline (10) H2O 20 70 80 90:10

4 L-Proline (20) H2O 15 30 95 97:3

5 L-Proline (30) H2O 15 30 95 97:3

6 L-Proline (20) EtOH 15 30 80 93:7

7 L-Proline (20) MeOH 15 30 82 91:9
a Reaction scale: 1 (1 mmol), 2a (2 mmol) and 3a (1 mmol).
b Solvent (5 mL) used.
c Isolated yield.
d Based on 1H NMR spectroscopic analysis.
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action was executed in EtOH and MeOH the desired product
was obtained in 80 and 82% yield, respectively (entries 6
and 7). Thus, the above studies led to the conclusion that 20
mol% L-proline in water under room temperature to reflux
are the optimum conditions in terms of yield and diastereo-
selectivity. It may be noted that simultaneous mixing of 1
(1 mmol), 2a (2 mmol) and 3a (1 mmol) using 20 mol% L-
proline also yielded the desired product in 95% yield in 45
min under reflux conditions, but the two-step procedure
reduces the required reflux time.

Having established the optimised reaction conditions,
the scope of the reaction was explored by reacting 2,6-di-
aminopyrimidin-4-one (1) with various aldehydes 2 and
barbituric acids 3; the results are presented in Table 2. Vari-
ous aromatic aldehydes participated well in the reaction
and the target products were obtained in good to excellent
yields. The electronic and steric effects from the substitu-
ents on the benzene ring have no significant impact on the
course of the reaction, as is evident from the fact that benz-
aldehydes with electron-withdrawing and -donating
groups in ortho-, meta- and para-positions reacted effi-

ciently (Table 2). Much to our satisfaction, heteroaromatic
aldehydes such as thiophene-2-carboxaldehyde and pyri-
dine-4-carboxaldehyde also reacted efficiently to give their
corresponding products 4gg and 4hh in 90% and 94% yields,
respectively (entries 7 and 8). The generality of the protocol
was further expanded when 1-methylbarbituric acid (3b)
and barbituric acid (3c) were reacted with 2,6-diaminopy-
rimidin-4-one and various aldehydes under the same reac-
tion conditions, and their corresponding products were ob-
tained in high yields (entries 9–15).

Assessment of the 1H NMR spectra revealed that the re-
action is highly diastereoselective and the products 4bb,
4ee, 4fk, 4kl, 4mn and 4fo were obtained in 100:0 diastere-
oselectivity. A comparison of the diastereoselectivity and
product yields of the present methodology with the report-
ed procedures for the synthesis of spiro[pyrido[2,3-d]py-
rimidin-2-amine-6,5′-pyrimidines] is shown in Table 3. In-
terestingly, the use of L-proline increases the diastereose-
lectivity and the product yield significantly. However, all
products were racemic.

Table 2  Scope of the Synthesisa

Entry R1 R2 R3 4 Time (min) Yield (%)b cis/transc

RT Reflux

1 C6H5 CH3 CH3 4aa 15 30 95 97:3

2 2-O2NC6H4 CH3 CH3 4bb 10 25 93 100:0

3 2-BrC6H4 CH3 CH3 4cc 15 30 90 84:16

4 3-FC6H4 CH3 CH3 4dd 15 30 91 92:8

5 4-ClC6H4 CH3 CH3 4ee 15 25 96 100:0

6 4-MeOC6H4 CH3 CH3 4ff 10 30 94 92:8

7 2-Thienyl CH3 CH3 4gg 15 30 90 61:39

8 4-Pyridyl CH3 CH3 4hh 15 30 94 98:2

9 2-ClC6H4 H CH3 4ii 15 30 91 71:29

10 3-BrC6H4 H CH3 4jj 15 35 94 93:7

11 4-MeOC6H4 H CH3 4fk 10 30 91 100:0

12 4-MeC6H4 H CH3 4kl 15 25 93 100:0

13 3,5-(MeO)2C6H3 H H 4lm 10 25 90 98:2

14 3-MeC6H4 H H 4mn 15 30 91 100:0

15 4-MeOC6H4 H H 4fo 10 25 93 100:0
a Reaction scale: 1 (1 mmol), 2 (2 mmol), 3 (1 mmol).
b Isolated yield.
c Based on 1H NMR spectroscopic analysis.
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Table 3  Comparison of Present Methodology with Reported Method-
ology

All products synthesised were characterised by 1H and
13C NMR, IR spectroscopy, mass spectrometry and elemen-
tal analysis. Known compounds were further authenticated
by comparison with analytical data from previous reports.

In summary, we have developed a straightforward syn-
thesis of spiro[pyrido[2,3-d]pyrimidin-2-amine-6,5′-py-
rimidines] by L-proline-catalysed one-pot multicomponent
domino reaction of 2,6-diaminopyrimidin-4-one, aldehydes
and barbituric acids in water. The protocol is highly regio-
and diastereoselective and works under mild reaction con-
ditions. The use of water as reaction medium and L-proline
as organocatalyst has expanded the scope of aqueous medi-
um organocatalysed reactions. Operational simplicity, high
yields, shorter reaction time, wide substrate scope, simple
purification process and diastereoselectivity from 61:39 to
100:0 make this protocol highly attractive.
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