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Abstract Reaction conditions have been identified to conduct a one-
pot asymmetric organocatalytic aldol reaction with a hydrophobic sub-
strate in aqueous medium via a process running in flow mode. By em-
ploying a mixture of water and 2-propanol, a hydrophobic aldehyde and
3.6 mol% of an organocatalyst, this microreactor process affords the de-
sired aldol adduct with a conversion of 74% and an enantioselectivity of
89% after a reaction time of 60 minutes.

Key words aldol reaction, asymmetric catalysis, continuously running
processes, flow chemistry, organocatalysis, water

Enantioselective chemoenzymatic one-pot processes
represent an attractive and efficient methodology in syn-
thetic organic chemistry for the construction of chiral mol-
ecules.2 However, so far, only a limited number of one-pot
processes with combined chemo- and biocatalysis have
been reported,2 and the combination of such types of reac-
tions in a one-pot and flow mode is, to the best of our
knowledge, unknown so far. At the same time, flow pro-
cesses3 have gained increasing importance, and the devel-
opment of commercialized flow processes for pharmaceuti-
cal purposes also meet the regulatory guidelines of the U.S.
Food and Drug Administration (FDA) and the European
Medicines Agency (EMA).4 There are a range of advantages
when conducting processes in a continuously operating
mode. For example, the quality of the desired product can

be more easily ensured and numbering up of flow modules
represents an elegant method for increasing the production
scale without facing scale-up concerns.

One of the current challenges in the field of chemoenzy-
matic flow processes consists of developing a proof of con-
cept that reactions from different ‘worlds’ of catalysis,
namely chemo- and biocatalysis, can be merged utilizing an
aqueous reaction medium (as the general reaction medium
of choice when planning to apply enzyme-catalyzed reac-
tion steps). As a ‘benchmark system’ for our study in this
field, we chose the cascade synthesis of 1,3-diols starting
from aldehydes and acetone through a combination of an
initial organocatalytic aldol reaction and a subsequent bio-
catalytic ketone reduction using an alcohol dehydrogenase.5
The concept of this model process is illustrated in Scheme 1.
The motivation to focus on this specific synthesis is due to
the fact that, for the batch mode, efficient versions of such a
one-pot process have already been developed, thus repre-
senting an ideal starting point for our study.5

Scheme 1  Combining two reactions from different catalytic ‘worlds’, 
namely organo- and biocatalysis, in a ONE-FLOW process
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In order to achieve compatibility of the process condi-
tions with the flow mode requirements, initial focus was
directed toward the identification of suitable reaction con-
ditions enabling the organocatalytic aldol reaction and bio-
catalytic reduction to be run in aqueous medium in flow
mode. However, the reported conditions for the initial
asymmetric organocatalytic aldol reaction step in batch
processes5–7 appeared to be problematic for flow purposes
due to the heterogeneity of the reaction mixture in aqueous
media. Thus, a major task was to identify solvent conditions
for the organocatalytic aldol reaction in aqueous medium
being also suitable for the flow mode. For this proof of con-
cept study, we chose the asymmetric aldol reaction of ace-
tone with 3-chlorobenzaldehyde (1) utilizing organocata-
lyst 2,6,8 developed by the Singh group, as a starting point
due to the excellent results obtained for this reaction in
batch mode.5–7 Herein, we report our results achieved within
the EU network research project ONE-FLOW9 on extending
this asymmetric organocatalytic reaction with a hydrophobic
aldehyde in aqueous medium toward a flow mode process.

As the initial step, we searched for a reaction medium
that was suitable for conducting the organocatalytic aldol
reaction of 3-chlorobenzaldehyde (1) and acetone with or-
ganocatalyst 2 in flow mode. When utilizing brine as the
preferred aqueous medium in earlier studies on this aldol
reaction with 9 equivalents of acetone and 0.5 mol% of or-
ganocatalyst 2 running in batch mode,5b,c,6 a mixture with a
milky consistency was formed, even in the presence of 2-
propanol, which appeared to be disadvantageous for a flow
process (Table 1, entry 1). Thus, we replaced brine with a
phosphate buffer with a pH of 7 and again added 2-propa-
nol to enhance the solubility of the hydrophobic aldehyde 1
(Table 1, entry 2). This solvent system would be beneficial
since it is suitable for the biocatalytic reduction as well,
which is planned to be combined with the organocatalytic
reaction at a later stage. Furthermore, in earlier work we
demonstrated that the organocatalytic aldol reaction also
proceeds in this solvent system.5a When applying this com-
bination of buffer (pH 7) and 2-propanol as the solvent sys-
tem, we were pleased to find a clear solution of the hydro-
phobic substrate. Additionally, for the organocatalyst 2, we
found that up to 3.6 mol% can be utilized without forming a
precipitate. Accordingly, this solvent system was chosen for
our further studies.

Having a reaction medium with a consistency fulfilling
the requirements for a flow process in hand, next we fo-
cused on the development of a suitable quenching method
for the reaction mixture. As the reaction time of the flow
process is very short ranging from 5 to 60 min, an efficient
quenching method for this system is of utmost importance
for a precise determination of the conversion and enantio-
meric excess after such short reaction times. Such a
quenching method should stop the flow reaction immedi-
ately. Toward this end, a two-phase system was used, which
consists of an aqueous hydrochloric acid phase and methy-

lene chloride as an organic phase (Table 2). Once the reac-
tion solution leaves the flow reactor and is collected in the
two-phase system, the hydrochloric acid protonates the
catalyst, therefore enhancing its solubility in water and de-
creases its catalytic activity dramatically. While the catalyst
remains in the aqueous phase the starting material and
product are extracted in situ into the organic phase and can
be separated from the catalyst. To further suppress the con-
tinuation of the aldol reaction while being collected in the
storage container after the flow reaction, we cooled the
mixture to 0 °C. It should be added that validation of this
method has been done by means of a 1:1 mixture of start-
ing material and product, which led to a negligible change
in the ratio of 1 and 3 within 5 minutes and a slight change
after 30 minutes (Table 2). Thus, the storage time of the col-
lected solution in these containments after completion of
the flow process and prior to the work-up should not ex-
ceed 15 minutes.

Table 1  Screening for a Suitable Homogeneous Reaction Medium

Entry Reaction Medium Consistency

1 brine/2-propanol milky

2 buffer (pH 7)/2-propanol clear

OH
Cl

OO

H
Cl O organocatalyst 2

(0.5 mol%)

1
(500 mM)

(9.0 equiv) 3

N
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O

NH

Ph

OH
Ph

r.t., 24 h

Table 2  Concept and Validation of the Quenching Method

Entry Stirring time 1 (%)a 3 (%)a

1 0 min 51 49

2 5 min 50 50

3 15 min 48 52

4 30 min 47 53
a Determined via 1H NMR spectroscopy.
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With an appropriate quenching method in hand, we
started to adapt the conditions of the batch reaction to the
requirements for a flow process in order to use such reac-
tion parameters in a flow process. The first challenge con-
sisted of overcoming the long reaction time of 24 hours,
which is compatible with batch processes but not suitable
for processes running in flow mode. Thus, we focused on
identifying reaction conditions which enable the asymmet-
ric organocatalytic aldol reaction with high conversion and
enantioselectivity, but also within a short reaction time. As
a target reaction time frame, we defined 15–60 minutes
and investigated the influence of the catalyst loading (0.5–
3.6 mol%) and temperature (r.t. and 40 °C), in combination
with short reaction times, on the organocatalytic aldol re-
action in terms of conversion and enantioselectivity. The
results of this reaction-parameter screening are summa-
rized in Table 3.

It turned out that in the presence of very low catalyst
loadings of 0.5 mol% and 1.5 mol%, even at an elevated tem-
perature of up to 40 °C, the reaction time of 60 minutes was
not sufficient to obtain a high conversion and did not ex-
ceed 25% in these cases (Table 3, entries 1, 2 and 4–9). On
the other hand, it is noteworthy that a significantly higher
catalyst loading of 3.0 mol% in combination with a high

temperature of 40 °C led to an improved conversion of 60%,
but with a relatively low ee value of only 61% ee (Table 3,
entry 3). The decrease of the ee value at an increased cata-
lyst loading is in accordance with previous results,5c,7a and
can be rationalized by a change from a kinetically con-
trolled to a thermodynamically controlled reaction.

In contrast, on decreasing the reaction temperature to
room temperature, and notwithstanding the low conver-
sions when using lower catalyst loadings (0.5 and 1.5
mol%), the ee values increased up to 90% (Table 3, entries 4–
9). Thus, we became interested in studying the impact of
higher catalyst loadings while maintaining the reaction
temperature at room temperature (Table 3, entries 10–15).
Thus, on increasing the catalyst loadings to 3.0 and 3.6
mol%, respectively, we were pleased to find that even with-
in a short reaction time of 60 minutes the formation of the
desired aldol now proceeded with increased conversions of
62% and 67% and with high enantioselectivities of 89% and
91%, respectively (Table 3, entry 12 and 15).

Thus, as a result of this reaction-parameter study on the
organocatalytic aldol reaction in batch mode, it turned out
that the combination of the desired short reaction time of
60 minutes in combination with loadings of 3.0 and 3.6
mol% of the organocatalyst 2 gave the best results (Table 3,
entries 12 and 15). Since a precipitate was formed when us-
ing a loading exceeding 3.6 mol% of organocatalyst 2, the
reaction conditions based on a catalyst loading of 3.6 mol%
of 2 (according to Table 3, entry 15) were chosen for our
subsequent studies on the extension of this asymmetric or-
ganocatalytic reaction toward a process running in flow
mode.

In order to develop a flow process for this asymmetric
catalytic aldol reaction in aqueous medium (which would
be, to best of our knowledge, the first asymmetric organo-
catalytic reaction with a hydrophobic substrate in water
running in flow mode), we conducted the reaction in a cap-
illary-type tube reactor using a catalyst loading of 3.6 mol%
of 2. The concept of this flow process, which is shown sche-
matically in Scheme 2, a and b, is based on the combination
of two aqueous buffer/2-propanol solutions A and B bear-
ing the aldehyde in A and catalyst as well as acetone acting
as a co-solvent and reagent in B. The flow reactor itself can
be tailored to the desired individual length and diameter re-
sulting in different residence times based on the set flow
rate, while not comprising the hydrodynamics and assorted
heat and mass transfer (Scheme 2, b and Table 4).

Thus, we carried out the reaction in several different
flow reactors (diameter: 1/16′′; length: 9.5–152 cm) with
flow rates ranging from 0.0125 mL/min to 0.2 mL/min re-
sulting in residence times between 15 and 60 minutes. The
results are summarized in Table 4 and showed two interest-
ing general trends. First, it seems that while maintaining
the residence time constant, high flow rates led to higher
conversions compared to slow flow rates.

Table 3  Screening of the Aldol Reaction Conditions for the Batch Mode

Entry Cat. amounta Temp Time Conv.a ee

1 0.5% 40 °C 60 min 3% 81%

2 1.5% 40 °C 60 min 25% 79%

3 3.0% 40 °C 60 min 60% 61%

4 0.5% r.t. 15 min 1% 73%

5 0.5% r.t. 30 min 5% 90%

6 0.5% r.t. 60 min 3% 89%

7 1.5% r.t. 15 min 6% 82%

8 1.5% r.t. 30 min 11% 88%

9 1.5% r.t. 60 min 21% 77%

10 3.0% r.t. 15 min 13% 89%

11 3.0% r.t. 30 min 29% 90%

12 3.0% r.t. 60 min 62% 89%

13 3.6% r.t. 15 min 20% 90%

14 3.6% r.t. 30 min 47% 91%

15 3.6% r.t. 60 min 67% 91%
a Cat. amount = catalytic amount (% is defined as mol% in case of Cat. 
amount); Conv. = conversion.
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Table 4  Screening of Parameters (Reactor Length and Flow Rate) in 
Flow Mode

Second, in longer reactors, higher conversions were ob-
served than in shorter reactors. Both indicate the positive
impact of turbulence on the reaction course. For example, a
conversion of 52% with an enantioselectivity of 88% ee was
achieved when using reactor R5 with a flow rate of 0.05
mL/min in 60 minutes (Table 4), and this result is already in
the range of the batch experiments (Table 3).

Since we were interested in further improving the per-
formance of the flow process, we carried out reactions in
even longer reactors in order to operate the process at even
more elevated flow rates. When conducting the experiment
in reactor R61/16′′ at a flow rate of 0.2 mL/min, an increased
conversion of 74% in combination with a high enantioselec-
tivity of 89% was obtained (Table 5). In addition, we carried
out the reaction in reactor R61/32′′, which has a smaller inner
diameter but is of the same length as R61/16′′, thus reducing
the flow rate to only 0.05 mL/min in order to maintain the
same residence time. Nevertheless, we achieved compara-
ble results after 60 minutes, obtaining the desired product 3
with a slightly decreased conversion of 69% but still with a
high enantioselectivity of 90% (Table 5).

Table 5  Screening of Parameters (Inner Diameter and Flow Rate) in 
Flow Mode

As the flow rate and length of the reactor turned out to
be of significance for the conversion when operating at the
same residence time, we assumed that this might be due to
their impact on mixing and convection, which is the hydro-
dynamic effect relevant under such flow conditions govern-
ing mass transfer. Since the mixing effect can be easily visu-

Scheme 2  Asymmetric organocatalytic aldol reaction with a hydrophobic aldehyde in aqueous medium operating in flow mode

Flow rate 
(mL/min)

Reactor length (cm); reactor volume (mL)

R1
9.5; 0.19

R2
19; 0.38

R3
38; 0.75

R4
76; 1.5

R5
152; 3.0

Residence time (min)

0.2 – – – – 15

0.1 – – – 15 30

0.05 – – 15 30 60

0.025 – 15 30 60 –

0.0125 15 30 60 – –

Flow rate 
(mL/min)

Reactor length (cm); reactor volume (mL)

R1
9.5; 0.19

R2
19; 0.38

R3
38; 0.75

R4
76; 1.5

R5
152; 3.0

Conversion (%); ee (%)

0.2 – – – – 22; 88

0.1 – – – 15; 85 28; 87

0.05 – – 17; 89 31; 89 52; 88

0.025 – 16; 89 23; 88 44; 86 –

0.0125 14; 89 22; 90 31; 85 – –

Flow rate 
(mL/min)

Reactor length (cm); reactor volume (mL); diameter (mm)

R61/16′′
606; 12; 1.59

R61/32′′
697; 3.0; 0.8

Residence time (min); conversion (%); ee (%)

0.4 30; 47; 89 –

0.2 60; 74; 89 –

0.05 – 60; 69; 90
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alized by using solutions A and B of different color (accord-
ing to the setup in Scheme 2, b), we colored one solution
with Coomassie Brilliant Blue. As shown in Scheme 2, c,
very fast mixing occurs, which also indicates that no lami-
nar flow is created in any of our reactions.

When comparing the best organocatalytic aldol reac-
tions in batch and flow mode within our present study un-
der comparable reaction conditions (e.g., in terms of reac-
tion time/residence time and catalyst loading), the best or-
ganocatalytic flow reaction was accomplished at room
temperature in reactor R61/16′′ within a residence time of
only 60 minutes. As a result, under these conditions, the
conversion reached 74% and a high enantioselectivity of
89% ee was obtained (Table 5 and Scheme 3). Thus, the re-
sult of this flow process is nearly identical and even slightly
superior to that obtained for the analogous batch process,
which gave a slightly lower conversion of 67% and an enan-
tioselectivity of 91% ee. A comparison of these best asym-
metric organocatalytic aldol reactions in batch and flow
mode, respectively, is shown in Scheme 3.

Scheme 3  Comparison of the best asymmetric organocatalytic aldol 
reactions at a reaction and residence time of 60 minutes running in 
batch and flow mode

The similar conversions in both flow and batch mode
are also in accordance with the reaction kinetics theory of
ideal continuously operating plug-flow and ideal discontin-
uously operating stirring-tank reactors. Assuming homoge-
neous reaction conditions and ideal conditions, a reaction
proceeding in a plug-flow reactor and a stirring-tank reac-
tor would lead to the same conversion (as a specific volume
segment of the reaction mixture in a plug flow can then be
considered as a ‘micro-scale batch reactor volume’).

In conclusion, a proof of concept has been demonstrated
in which the asymmetric organocatalytic aldol reaction
with hydrophobic substrates in water can be conducted ef-
ficiently in a process running in flow mode with short resi-
dence times of, e.g., 60 minutes. Besides being suitable for
flow purposes, a further benefit of the identified reaction
conditions is their high compatibility with enzymatic re-
duction reactions, since the biocatalytic reduction process
needs exactly this reaction medium consisting of buffer (pH
7) and 2-propanol. Thus, the realized organocatalytic aldol
reaction is expected to represent a suitable basis for the
planned combination with a biocatalytic reduction reaction

toward a chemoenzymatic process running in a one-pot and
flow mode (ONE-FLOW process). The development of such a
process is currently in progress.

All standard reagents were purchased from commercial sources and
were used without further purification. Singh catalyst (2) was pre-
pared according to the literature.8 1H NMR spectra were recorded on a
Bruker Avance 500 spectrometer. Analytical HPLC was carried out
with a JASCO LC Net II/ADC using a UV-1575 UV/Vis detector and a
Daicel Chiralpak® AD-H column. Glass reaction vials (10 mL) (which
are kept at the desired temperature in an aluminum block) were used
for batch reactions. The applied microreactors were made from Teflon
tubes (1/16′′ id; 0.0198 mL/cm and 1/32′′ id; 0.00503 mL/cm). For in-
stallation, the reactors were connected to the two syringes through a
three-way piece (0.05′′ id for 1/16′′ tubes and 0.02′′ id for 1/32′′ tubes)
and two Teflon tubes (1/16′′ id; 20 cm). The outlet was connected to
the quenching solution, which was cooled to 0 °C. The reactors were
prepared from 1/16′′ tubing (R1: 9.5 cm, 0.19 mL; R2: 18.9 cm, 0.38
mL; R3: 37.9 cm, 0.75 mL; R4: 75.8 cm, 1.5 mL; R5: 151.6 cm, 3 mL;
R61/16′′: 606 cm, 12 mL) and 1/32′′ tubing (R61/32′′: 597 cm, 3 mL). If
necessary, the reactors were adjusted to the desired temperature by
means of a water bath fitted with a thermostat. A Legat® 200 syringe
pump from KD Scientific Inc. (84 October Hill Road, Holliston, MA
01756, USA; www.kdscientific.com) was used with commercially
available 50 mL plastic syringes (Terumo®).

Organocatalytic Aldol Reactions in Batch Mode According to Table 
3; General Procedure
To a solution of 3-chlorobenzaldehyde (1) (70.3 mg, 0.5 mmol), 2-pro-
panol (260 L) and phosphate buffer (50 mM, pH = 7, 180 L), which
has been adjusted to the desired reaction temperature, was added a
solution containing Singh’s catalyst (2) (0.92–6.60 mg, 0.0025–0.018
mmol) in 2-propanol (20 L) and acetone (330 L, 4.5 mmol), and the
resulting mixture was stirred at room temperature or at 40 °C for 15–
60 min. The mixture was added to CH2Cl2/2.0 M HCl (aq) solution (3
mL/3 mL) at 0 °C. The organic materials were extracted with CH2Cl2
and concentrated in vacuo. The conversions were determined from
the 1H NMR spectra of the crude reaction mixtures. The ee values
were determined by chiral HPLC after preparative TLC (Chiralpak®

AD-H column, hexane/2-propanol, 95:5, flow: 1.0 mL/min, 220 nm).
Retention time (min): 14.2 [(R)-3], 16.4 [(S)-3].

(R)-4-(3-Chlorophenyl)-4-hydroxybutan-2-one (3)
1H NMR (400 MHz, CDCl3):  = 2.18 (s, 3 H), 2.80–2.82 (m, 2 H), 5.10–
5.12 (m, 1 H, CH), 7.19–7.29 (m, 4 H).
The analytical data are in accordance with those reported in the liter-
ature.5c

Organocatalytic Aldol Reaction in Flow Mode According to Scheme 2
Solution A [3-chlorobenzaldehyde (1) (2.1085 g, 15 mmol), 2-propa-
nol (7.8 mL) and phosphate buffer (50 mM, pH = 7, 5.4 mL)] and solu-
tion B [Singh’s catalyst (2) (197.9 mg, 0.54 mmol), 2-propanol (0.6
mL), acetone (9.9 mL, 135 mmol) and phosphate buffer (50 mM, pH =
7, 4.5 mL)] were transferred into 50 mL plastic syringes (28 mm diam-
eter), and pumped with a flow rate of 0.1 mL/min through a microre-
actor at room temperature (r.t.). The equilibration time was adjusted
to the twofold retention time (e.g., 120 min in case of 60 min resi-
dence time). Subsequently, the eluted sample was collected and
quenched by dropwise addition into a solution of CH2Cl2/2.0 M HCl

conv. [%]

flow mode

batch mode

74

67

ee [%]

89

91

OH
Cl

OO

H
Cl O
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(3.6 mol%)

1
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+
r.t., 60 min

phosphate buffer
2-propanol
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(aq) (3 mL/3 mL) at 0 °C. The organic materials were extracted with
CH2Cl2 and concentrated in vacuo. The conversions were determined
from the 1H NMR spectra of the crude reaction mixtures. The ee val-
ues were determined by chiral HPLC after preparative TLC (Chiralpak®

AD-H column, hexane/2-propanol, 95:5, flow: 1.0 mL/min, 220 nm).
Retention time (min) = 14.2 [(R)-3], 16.4 [(S)-3].

(R)-4-(3-Chlorophenyl)-4-hydroxybutan-2-one (3)
1H NMR (400 MHz, CDCl3):  = 2.18 (s, 3 H), 2.80–2.82 (m, 2 H), 5.10–
5.12 (m, 1 H, CH), 7.19–7.29 (m, 4 H).
The analytical data are in accordance with those reported in the liter-
ature.5c
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