
R. Patil, W. Zhang, 
W.Shen 

USC I Information Sciences Institute, 
Marina del Rey CA, USA 

1. Introduction 

The increasing use of workstations 
by health-care providers, administra­
tive personnel, and ancillary services 
has given rise to the need for a general 
and reliable mechanism for coordinat­
ing activities and flow of information 
among agents in the dynamic, distrib­
uted, heterogeneous health-care de­
livery environment. 

In a distributed collaborative envi­
ronment, individual problem solvers 
or agents must cooperate to achieve 
common and individual goals. Unfor­
tunately, distributed environments in 
the real world are dynamic and unreli­
able, imposing many challenges and 
difficulties in developing multi-agent 
systems. In such environments, agents 
may not be available or operational all 
the time, or communication between 

Yearbook of Medical Informatics 1996 

Review Paper 

Review Paper 

An Information Mediator 
Network for Tasks in Dynamic 
Environments 

Abstract: Coordination of activities among information workers and services, tracking 
and managing activities, and intelligent distribution of information are essential to the 
efficient operation of any large enterprise. This is particularly important in the health­
care domain, where many different organizations must cooperate to provide patient care 
reliably in a dynamically changing environment. In this review paper we present a 
distributed system that supports cooperative problem solving, activity management, and 
intelligent delivery of information in dynamic and unreliable environments. The system 
consists of a network of task/context managers (TCMs ). Each TCM manages a group of 
related agents. It maintains up-to-date information on availability, operational status, 
and activities of participating agents, and it acts as a mediator between service requesters 
and service providers. In addition, the TCM acts as a representative for its agents with 
other TCMs, allowing different groups of agents to collaborate with one another. This 
paper describes the system architecture, its implementation and capabilities including 
matchmaking, plan monitoring, and failure recovery. Our system has been used in 
prehospital emergency patient information management applications. 

Keywords: Distributed Agents, Medical Workstation, Software Engineering. 

agents may not be possible at a given 
time. Yet, the system as a whole must 
continue to operate with the resources 
available, and fail gracefully when 
some activity cannot be performed 
due to unavailability of needed service 
agents. 

To take a vivid, though somewhat 
extreme example, imagine the task of 
providing emergency medical services 
in the chaotic and dynamic environ­
ments of a battlefield or that of a na­
tional or regional disaster. We hastily 
assemble a team and deploy it. Each 
team member has different capabili­
ties, and must cooperate with others in 
an unreliable communication environ­
ment. Consider a combat medical-sup­
port group consisting of surgical teams, 
battalion aid stations, transportation 
teams, intensive care units, laborato­
ries, and other support units. They 

must move frequently to keep up with 
the changing conditions of the battle­
field. Yet, each of the medical units 
must use the services and resources of 
the others in order to deliver life-sav­
ing health care. For example, a battal­
ion aid station needs a transportation 
team to evacuate a patient. However, 
the designated transportation unit may 
be temporarily out of service, or out of 
communication reach. Just as this is 
happening, another transport unit re­
turning from troop movement may be 
available to provide a "lift-of-oppor­
tunity". In such an evolving and con­
stantly changing distributed 
environment, it is difficult, if not 
impossible, for an agent to keep track 
of all available agents and resources in 
planning and executing its tasks. 

We have developed a system to 
address these needs. It consists of a 

95 



network of task/context managers 
(TCMs ), which act as mediators be­
tween se~vice requesters and service 
providers. A TCM keeps track of the 
current status of a group of agents, 
matches and routes service requests to 
the most appropriate agent(s), moni­
tors the progress of involved agent(s), 
recovers from agent failure if it occurs 

- and, finally, composes the results based 
on the agent responses and delivers 
the results. Furthermore, when a TCM 
is unable to resolve a service request 
using the local agents it manages, it 
can delegate the request to other TCMs. 
The ability to network TCMs together 
allows the system to be scaled and/or 
reconfigured during operation. 

Three main aspects need to be ad­
dressed when building a distributed 
multi-agent system: agent theories, 
system architectures, and communi­
cation languages [ 14]. Agent theories 
define agents, their properties and rea­
soning schemes. System architectures 
deal with structures in which agents 
are organized, and how they commu­
nicate with one another. When envi­
ronments are dynamic, the most im­
portant feature of a system's architec­
tures is reconfigurability; an agent must 
be able to join the system at any time, 
to leave the system gracefully or due to 
a failure, and to rejoin the system later. 
Agent communication languages pro­
vide the interface for inter-agent and 
human-agent communication, as well 
as the task primitives and methods by 
which agent programs are compiled_ 
and executed. Although all three as­
pects are important, the system archi­
tecture is critical for effective opera­
tion in dynamic environments. 

In this paper, we describe our sys­
tem, with a focus on agent properties 
and system architectures. In section 2, 
we discuss required agent properties 
for cooperative problem solving. In 
section 3, we introduce Task/Context 
Managers and discuss their functions. 
We then consider how TCMs can be 
connected in order to deliver a broader 

96 

coverage of services iri section 4. We 
present an application of our system for 
patient-information management in sec­
tion 5, discuss related work in section 6, 
and fmally conclude in section 7. 

2. Agents 

An agent is a problem solver ca­
pable of performing certain services. 
In a cooperative system, an agent needs 
to communicate its capabilities to other 
agents. Furthermore, an agent should 
be willing to accept a request if it can 
perform the requested service. More 
important, an agent should be honest, 
not committing to any request that it 
cannot fulfill. An agent can delegate to 
other agents a task or a sub-task which 
it cannot carry out. It may also hold 
and communicate preferences in se­
lecting service providers. In short, an 
agent is an entity whose state can be 
viewed as consisting of mental com­
ponents such as beliefs, capabilities, 
choices, and commitments [11]. 

Agents may communicate with one 
another directly. Such direct commu­
nication is important when large quan­
tities of data, such as image files, need 
to be exchanged between agents. How­
ever, direct communication between 
agents for the purpose of recruitment 
(that is, assessment of their current 
capabilities and availability) is inap­
propriate for several reasons. First, the 
agents will be overloaded with status 
requests. Second, the communication 

traffic among agents will increase sig­
nificantly' because each agent will need 
to poll all other agents in order to 
identify the most suitable agent to re­
cruit. Finally, an agent may not know 
which other agents are operational at a 
particular time, and may thus-waste 
time contacting agents that are not 
operational. In addition, each agent 
will need to encode plans for the ex­
ecution of complex tasks (tasks re­
quiring multiple steps), error-recov­
ery plans when other agents fail, and 
contingent plans when appropriate 
agents cannot be found. To overcome 
these problems we introduce another 
class of agents, called Task/Context 
Manager. The main idea in adopting 
TCMs is to organize agents hierarchi­
cally into groups and to manage each 
group using a supervisory agent (the 
TCM). 

3. Task/Context Managers 

Agents may be organized in a group 
along many dimensions. For example, 
agents may be organized along geo­
graphic or organizational lines, they 
may be organized as a team of comple­
mentary agents with specified capa­
bilities (e.g., a multi-specialty team), 
or as a collection of similar agents 
(e.g., a single specialty team). Mter an 
agent group is identified, a TCM can 
be introduced to manage and coordi­
nate agents in that group. Each agent 
registers with the TCM and communi-

Figure 1. Tree structure ofTCM-agent connections. 

Agent 

Task/Context 
Manager 

Agent • • • Agent 

Yearbook of Medical Informatics 1996 



cates di~ectly with it. Two agents com­
municate their service requests and 
deliver results to each other through 
the TCM, as shown in Fig. 1. 

The two main functions of a TCM 
are (a) obtaining and maintaining in­
formation about agents, including their 
capabilities and status; and (b) acting 
as a mediator between an agent re­
questing service and agent(s) provid­
ing services to the requester. 

3.1. Active Bookkeeping 
In order to act as a mediator be­

tween service requesters and service 
providers, a TCM first needs to obtain 
and maintain the information about 
agent capabilities and.status. This can 
be done in two ways. 

The first is called a TCM-active 
scheme, with an assumption that the 
TCM knows the communication ad­
dresses at which agents may listen. 
The TCM periodically sends a status­
inquiry message to these addresses. 
When anew agent comes along, it uses 
a pre-assigned communication address 
and waits for a status-inquiry message 
from the TCM. Whenever such ames­
sage is received, the agent responds to 
it by providing information about its 
capabilities and status. When a re­
sponse comes from a previously inac­
tive address, the TCM creates a new 
agent record based on the responding 
message; otherwise, the TCM updates 
the agent information. This method 
suffers from two deficiencies. First, it 
increases the communication needs; 
second, it requires prior assignment of 
communication addresses to each 
agent, thus making agents less mobile, 
and the system less scalable. On the 
other hand, this approach does not 
require each agent to register/unregister 
with the TCM, and agent malfunctions 
can be quickly detected and corrected. 

The second is called an agent-ac­
tive scheme. This scheme assumes 
that the communication address of the 
TCM is known to each agent in the 

Yearbook of Medical Informatics 1996 

group managed by the TCM. When an 
agent wishes to become active or 
change its status, it sends a status mes­
sage to the TCM, and the TCM records 
the agent's status accordingly. This 
scheme overcomes many of the prob­
lems associated with the previous 
scheme, but it suffers from the prob­
lem that agent malfunctions become 
apparent to the TCM only when it 
attempts to contact the agent for addi­
tional tasks. 

To overcome these problems, the 
implemented software uses a modi­
fied agent-active scheme. Here, the 
TCM maintains information about the 
elapsed time since the last communi­
cation with an agent. Each time con­
tact is made between the TCM and the 
agent, the agent's "active" status is 
updated and the alarm clock is reset. If 
no contact between the agent and the 
TCM occurs within a pre-specified 
time interval, the TCM initiates con­
tact for the purposes of updating the 
agent status by polling the agent (as in 
the TCM-active scheme). 

In summary, a TCM maintains a 
table of currently active agents includ­
ing their capabilities and status. The 
first time a connection between the 
TCM and a new agent or a recovered 
agent is established, the TCM regis­
ters the agent by adding it to the active 
agent table. The TCM updates infor­
mation on agents whenever new infor­
mation is available. Thus, each TCM 
maintains up-to-date information on 
the availability and status of each of 
the agents it controls. In the next sec­
tion we describe how the TCM medi­
ates between agents requesting ser­
vices and those providing them. 

3.2. Mediator 
A TCM can be viewed as a black­

board system with a specialized con­
trol structure. A service requester can 
post the request to the blackboard. It is 
the TCM' s responsibility to see that 
the request is serviced. Servicing a 
request involves four steps: 

1. Matchmaking and/or planning: 
developing a sequence of actions 
(tasks) that must be taken to satisfy 
the request based on the available 
agents and resources, matching in­
dividual tasks to available agents, 
and routing tasks to selected agents. 

2. Monitoring and detecting: moni­
toring the execution of tasks and 
the progress of involved agents, 
and detecting possible failure. 

3. Error recovery: recovering from 
agent error and other resource fail­
ure. 

4. Responding: integrating responses 
from service providers and gener­
ating a response to the service re­
quester. 

In the following subsections we look 
at each of these steps in greater detail. 

3.2.1 Matchmaking and Planning 
A request or task may originate 

from a human operatorinteracting with 
an application agent or may be auto­
matically generated by an agent in the 
course of its operations. 

The TCM begins by matching the 
task statement with the capability de­
scriptions of the available agents. If 
the match identifies one or more ca­
pable agents, the TCM simply acts as 
a matchmaker. That is, it selects the 
most appropriate agent among those 
capable of performing the task, con­
structs a request for the selected agent 
to perform the task, and routes the 
request to the agent. 

Task requests that can be executed 
by a single agent in the current envi­
ronment are called primitive. If a task 
cannot be performed by any single 
available agent, it is c~lled non-primi­
tive. To perform a non-primitive task, 
the TCM must use plans that (hierar­
chically) decompose the task into 
primitive sub-tasks that can be per­
formed directly by available agents. 
This can be done in two ways: static or 
dynamic. In the static method, a set of 
predefined plans are stored in a data­
base. Given a service request, the TCM 

97 



identifies all the applicable plans and 
orders them, based on its preferences. 
Preference is based on a number of 
factors, such as: plan size (the number 
of primitive tasks in a plan), locality 
(local agents are preferred over those 
belonging to other TCMs ), estimated 
task completion time, and cost. 

Given an ordered set of plans, the 
TCM chooses the most promising plan 
to execute. If the execution of the 
current plan fails, the next most prom­
ising plan is chosen for execution. 
This continues until a plan succeeds, 
or all applicable plans are exhausted. 

In the dynamic method, a planning 
system such as [ 13] is used to generate 
a plan with the request as its goal based 
on the current system status, i.e., the 
available agents and resources. If the 
plan fails during execution, the plan­
ning system can replan around the 
failure, utilizing as much of the previ­
ously executed plan as possible. 

Each of the two approaches has ad­
vantages. The static method is simpler 
and more predictable, and it allows or­
ganizational work-flow to be encoded 
and automated. The dynamic approach, 
on the other hand, is more flexible, can 
respond more readily to changes in op­
erating conditions, and can handle un­
usual situations. Our current implemen­
tation of TCM uses the static method 
because of its simplicity. 

Mter a plan is selected or gener­
ated, the TCM begins execution of the 
plan by constructing appropriate agent 
requests and forwarding the results 
from one agent to the next as dictated 
by the plan. Upon successful comple­
tion of the plan, it constructs a re­
sponse to the original request and re­
turns the results to the originating agent. 
The next section describes the moni­
toring and failure recovery aspects of 
plan execution. 

3.2.2 Monitoring, Detecting, and 
Recovery 

To facilitate monitoring and recov­
ery from error and failure, the TCM 

98 

assigns a unique identifier to each 
agent, which is used by the agent to 
identify itself at all times, and a unique 
identifier to each task (transaction). In 
addition, the TCM and agents inde­
pendently record their activities in their 
own log files (or database). An agent 
needs to record information regarding 
service requests sent and results re­
ceived, completed tasks, and the task 
currently being executed. The TCM 
needs to record information on service 
request received, results forwarded, 
and the plan currently being executed 
for each pending task. 

There are at least three levels at 
which a failure can occur. The first 
occurs at the task level. The precondi­
tions or resources of a task may not be 
valid after it starts. For example, the 
laboratory equipment an agent was 
planning to use suffers a breakdown, 
or the resource the agent was planning 
to use is re-allocated to a more urgent 
task. The second occurs at the agent 
level. An agent may have an internal 
malfunction or may suffer from com­
munication failure. The third and most 
critical failure can occur at the TCM 
level. Similar to an agent, a TCM can 
become inoperational due to internal 
malfunction or loss of communica­
tion. For robust operation of the sys­
tem, it is critical that the impact of 
these failures be minimized. Strate­
gies for recovering from each of these 
is described below. 

If an agent can detect a task failure, 
it can report the failure to the TCM, 
and the TCM can initiate recovery 
procedures in a fashion similar to that 
employed for error recovery in multi­
phase database transactions. If an agent 
malfunctions, crashes unpredictably 
or suffers a loss of communication, it 
cannot report the failure to the TCM. 
To detect these situations, the TCM 
must monitor the execution of each 
task. However, continuous polling of 
each task's status is not practical due 
to high computational and communi-

cation overheads. Furthermore, a bet­
ter scheme can be devised based on the 
fact that a functioning agent assigned 
to a task is required to either complete 
the task or report failure. 

When a TCM sends a task to an 
agent, they first negotiate a completion 
deadline for the agent to deliver the 
results. The TCM suspects that the 
agent has failed if it does not receive a 
response ornotification from the agent 
within this time limit. When an agent 
failure is suspected, the TCM sends an 
inquiry to the agent requesting a status 
update. If the agent does not respond, 
a failure is assumed and recovery pro­
cedures are initiated. If the agent re­
sponds, the TCM and the agent can 
renegotiate the task and set a new 
deadline. Finally, to facilitate the track­
ing of tasks by the TCM, the agent may 
embed the status of outstanding tasks 
in responses to other (possibly unre­
lated) messages from the TCM. 

An agent failure may cause the TCM 
to stop executing the current plan. 
When this happens, the TCM instructs 
all the involved agents to abandon 
related tasks, and switches to a new 
plan. In some cases, it is possible for 
the TCM to recover from agent failure 
by replanning and/or reassigning the 
failed task to other agents. If the recov­
ered plan can still be completed within 
the required deadline, the process can 
continue from here. If it cannot, then 
the TCM must negotiate with the origi­
nator of the request for a new deadline 
or abandon the task. 

Since a TCM is the central piece of 
a group of agents, its failure can be 
catastrophic. To prevent a disaster 
caused by a TCM failure, we intro­
duce a secondary TCM. The second­
ary TCM receives and maintains all 
the information available to the pri­
mary TCM, and runs on a machine 
other than the one running the primary 
TCM. It monitors the status of the 
primary TCM and takes over its role 
when it detects a failure in the primary 
TCM. Whenever the TCM writes a 

Yearbook of Medical Informatics 1996 



' ' 
:' Agent \ 

R·evi'ew P-:aper 

very large and required service re­
sponse time is short. 

We believe that as the number of 
TCMs grows, a combination of the 
two architectures described above will 
be needed to provide a proper balance 
between the response time and com­
munication costs. 

'-_ Group :' 
'------r-"'-_j ......... --- .. ' 

Figure 2. Hierarchical network ofTCMs. 

new record to its log file, it also for­
wards the record to the secondary 
TCM. The secondary TCM enters this 
information in its log file, and updates 
the record of the primary TCM' s sta­
tus. When the secondary TCM detects 
a failure in the primary TCM (i.e., no 
messages are received and the TCM 
does not respond to. the status request), 
the secondary TCM changes its status 
to active TCM and informs the agents 
in the group that it is now the TCM for 
the group. When the original TCM 
recovers from the failure, it can con­
tact the secondary TCM and resume 
its role by first obtaining the log file 
and then contacting the agents in the 
group. 

In the next section we describe the 
organization and operation of a net­
work of TCMs. 

4. Information Mediator 
Network 

Similar to agent organization, TCMs 
can also be organized into larger struc­
tures. TCMs can be organized in a 
hierarchical structure orin a fully con­
nected network, shown in Figs 2 and 3. 
In the first architecture, several TCMs 
are grouped together under the control 
of a higher level TCM which mediates 
between its member TCMs. This 
grouping can continue at a higher level 
of TCMs. Whenever a TCM cannot 

Yearbook of Medical Informatics 1996 

find an agent or a lower level TCM in 
the group to carry out a task, it passes 
the task as a service request to its 
superior TCM, which in turn tries to 
find an agent or another TCM that can 
handle the task. In the second architec­
ture, TCMs are networked together as 
a group of peers. Whenever a TCM 
cannot resolve a service request within 
its group of agents, it consults its peer 
TCMs. If one of the other TCMs can 
handle the request, the requestingTCM 
forwards the request to that TCM. The 
second architecture is more appropri­
ate when the number of TCMs is not 

Figure 3. Interconnected network ofTCMs 

.,~--~- ---- ........ , 

5. Applications 

The application domain of our sys­
tem is patient information and activity 
management. In the civilian domain, 
we are interested in coordinating team 
activities involved in pre-hospital 
emergency medical services, as well 
as coordinating and managing routine 
hospital-based patient-care activities 
such as registering a patient, planning 
a patient hospital visit, and coordinat­
ing activities among physicians, 
nurses, laboratories, and other ancil­
lary and administrative services. In 
military domains, we are interested in 
tasks of mobile hospital control and 
management, including maintaining 
dynamic status of battalion aid sta­
tions, surgical teams, transportation 

,, .. ,------ ........ "' 
:' Age nt '.

1 

'. Group : -------- ----- ...... 
( Agent \ 
\. Group / 

',.., ,,' ..... ___ _ ..... ..... ,," -- ---

Task/Context Task/Context 
Manager 

I 

' I 

' ' I 
I 

' ' ' 

: 

' .. 
\ 

\ 

' ' 
' 

---
Task/Context 

-- - - - '--------......-.5-- _j_ - - --
........... 

\ 
I 

• 0 I 

. '•., Agent Group •• -' 
.... ... .. ---------- ----

' 

--
' 

I 
I , , 

' ' \ 

' I 
I 

' I 

99 



teams, different laboratories, and other 
involved units; and coordinating pa­
tient activities. 

Our system is implemented using 
Microsoft Visual C++ and Microsoft 
Access database software. The net­
work communication is based on the 
TCPIIP protocol, and inter-agent com­
munication is based on Health Level? 
message format with minor extensions. 

The implemented system uses an 
agent -active scheme to establish a con­
nection between a TCM and an agent 
(see section 3.1), i.e., the first connec­
tion message is initiated by the agent. 
For ease of implementation we use a 
database of pre-defined (hand-crafted) 
plans for task decomposition rather 
than a planning system to dynamically 
generate plans at run-time. Further­
more, we use the fully connected net­
work architecture to organize TCMs, 
since the number of tasks sent across 
different TCMs is small. 

6. Related Work 

The area of software agents and 
distributed multi-agent systems is an 
active and rapidly growing topic of 
current research. The available and 
relevant literature is too vast to be 
adequately covered here. Interested 
readers are encouraged to look at [7] . 

The idea of a Task/Context Man­
ager was originally proposed in the 
context of a healthcare professional's 
workstation [10]. The idea of media­
tors was originally proposed by 
Wiederhold [12] as a means of orga­
nizing heterogeneous database sys­
tems. Considerable work in this area 
has been carried out under the ARPA 
Knowledge Sharing Effort [9], and 
under ARPA' s Intelligent Integration 
of Information program. Examples of 
systems based on mediators include 
SIMS [1, 2], which is a mediator be­
tween database queries and multiple 
data sources. A special mediator, called 
matchmaker [6], was used in a 

100 

groupware system [8]. 
A mediator network based on facili­

tators, called a federated system, has 
been proposed [ 4]. In such a system a 
facilitator routes messages to and from 
agents running on a machine [ 4, 5] in 
order to schedule and maintain the 
flow of communication. Cohen et al. 
[3] suggest an open architecture that is 
similar to the one presented in Fig. 2. 
Their system, however, does not ad­
dress the issue of dynamic recon­
figuration, and does not address issues 
offailure detection and error recovery. 

7. Conclusions 

We have presented a multi-agent 
system for distributed cooperative 
problem solving. In our system, we 
introduced task/context managers 
(TCMs), which act as mediators be­
tween service requesters and service 
providers. A TCM manages a group of 
agents solving domain-specific prob­
lems, maintains information about the 
capabilities and status of the agents, 
makes a plan to satisfy a request, 
matches and routes tasks to agents, 
monitors the execution of the plan, 
and detects and recovers from agent 
failure. We further introduced network 
architectures that connect many TCMs 
to provide scalability and collaboration 
among large groups of agents. The ar­
chitectures presented in this paper are 
most suitable for robust distributed col­
laborative problem solving in dynami­
cally changing environments. 

Acknowledgement: This research was 
supported in part by ARPA contract 
MDA972-94-2-0010, and NLM grant 1 

R01 LM05324 

References 

1. Arens Y, Chee CY, Hsu C-Nand Knoblock 
CA. Retrieving and integrating data from 
multiple information sources. Int J Intell 
Cooper Inform Syst 1993;2: 127-58. 

2. Arens Y, Knoblock CA, Shen W -M. Query 

reformulation for dynamic information in­
tegration. J Intell Inform Syst 1996, in 
press. 

3. Cohen PR, Cheyer A, Wang M, Baeg SC. 
An open agent architecture. In: Etzioni 0, et 
al,eds. WorkingNotesofAAA/l994Spring 
Symp on Software Agents. Stanford CA: 
American Association of AI, 1994:1-8. 

4. Genesereth MR, Ketchpel SP. Software 
agents. Comrnun ACM 1994;37:48-53. 

5. Genesereth MR. An agent -based approach 
to software interoperability. Proc. of the 
DARPA Software Technology Conf 
Arlington VA: Computer Science 
Department, Stanford University, Techni­
cal Report 1992:2. 

6. Kuokka D. and Harada L. 1995. 
Matchmaking for information agents. In: 
Mellish CS, ed. Proc of the 1411

' Intern Joint 
Conf on Artificial Intelligence (IJCAI-95 ). 
Montreal: Morgan Kaufmann, 1995:672-8. 

7. Lesser V, ed. First Int Confon Multi-Agent 
Systems. Menlo Park CA:AAAI Presstrhe 
MIT Press, 1995. 

8. McGuire J, Kuokka D, Weber J, 
Tenenbaum J, GruberT, Olsen G. SHADE: 
Technology for knowledge-based collabo­
rative engineering. J Concurrent Engineer­
ing: Research and Applications 1993; 1. 

9. Patil RS, Fikes RE, Patel-Schneider PF, 
McKay D, Finnin T, Grube TR, Neches R. 
The DARPA knowledge sharing effort: 
Progress report. In: Nebel B, Rich C, 
Swartout W, eds. Proc of 3rd Intern Conf 
on Principles of Knowledge Representa­
tion and Reasoning. Cambridge MA: Mor­
gan Kaufmann, 1992:777-88. 

10. PatilRS, SilvaJ, Swartout W. An architec­
ture for healthcare provider's workstation. 
lnt J Biomed Comput 1994;34:285-99. 

11 . Shoham Y. Agent-oriented programming. 
Artiflntell1993;60:51-92. 

12. Wiederhold G. Mediators in the architec­
ture of future information systems. IEEE 
Computer 1992;25:38-49. 

13. Wilkins DE, Myerss KL, Lowarance JD, 
Wesley LP. Planning and reacting in un­
certain and dynamic environments. J Exp 
Theor Artiflntell1995;7:121-152. 

14. Wooldridge MJ, Jenning NR. Agent theo­
ries architectures and languuages: A sur­
vey. In: Woolridge MJ, Jennings NR, eds. 
lntelligentAggents: Theories Architectures 
and Languages. New York: Springer­
Verlag 1995:1-32. 

Address of the authors: 
RameSh Patil, Weixiong Zhang, Wei-Min Shen, 
USC I Information Sciences Institute, 
4676 Admiralty Way, 
Marina del Rey, CA 90292, 
USA. 
E-mail: { ramesh,zhang,shen} @ isi.edu 

Yearbook of Medical Informatics 1996 


