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The area of decision-support sys­
tems has traditionally been an active 
field of research in medical informatics. 
Medicine provides some of the most 
challenging decision-making prob­
lems. As a result, over the past decades 
medical informatics has been a fertile 
area for research into 'decision-sup­
port systems. The complexity of medi­
cal decision making has led to numer­
ous new problem-solving methodolo­
gies that are applied in many other 
domains, and medical decision-sup­
port problems have served as testbeds 
for scores of problem-solving meth­
ods that were originally developed in 
other fields. 

The papers in this section focus on 
a number of practical as well as theo­
retical aspects of medical decision­
support systems: how to generate vari­
ous types of decision-support systems 
automatically from data; how to pro­
vide diagnostic assistance for a large 
domain in a manner that is consistent 
with clinician reasoning; whether and 
how easily systems can be transferred 
from one setting to another; how deci­
sion support affects resource use; and 
what types of assumptions underlie 
our decision-support systems. 

The knowledge-acquisition bottle­
neck remains an active problem area 
in medical decision-support systems. 
A number of papers in this section 
address this problem by focusing on 
methods of machine learning. Bohren 
et al. [2] present a classification sys­
tem that builds a decision tree to make 
outcome predictions. They demon­
strate their technique using databases 
from three medical domains. The pa-
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pers by Doyle etal. [5], Livieratos and 
Chappell [(i], and Su [7] present 
theoretical and practical contributions 
in the area of neural networks. Doyle 
et al. present a type of network that 
handles missing data well. Livieratos 
and Chappell develop a neuron that 
can show the level of abnormality of 
image sections. Su develops a class of 
neural networks in which the weights 
and links are more easily interpreted 
and explained. 

The article by Boon-Falleur et al. 
[3] discusses some of the logistic is­
sues involved in applying decision­
support systems in clinical care. These 
researchers present a system that auto­
matically applies practice guidelines 
to determine whether test orders are 
justified given the indications provided 
on the order form. They also discuss 
the problems involved in porting a 
systemfromone institution to another, 
especially if this involves settings in 
different countries. Do Amaral et al. 
[4] present a comprehensive system 
for psychiatric diagnosis. The system 
reflects a large knowledge-acquisition 
effort, resulting in a system that com­
bines uncertain and deterministic rea­
soning to model the successive phases 
of diagnosis employed by an expert. 
Aliferis and Miller [ 1] address an in­
teresting philosophical issue that has 
been the source of much debate 
throughout the history of medical de­
cision-support systems. They provide 
an overview of the assumptions un­
derlyingdecision-supportsysterns, and 
propose definitions that clarify the 
heuristic nature of practically all prob­
lem-solving systems. 

Bohren et al. [2] present a general 
classification system called INC2.5. 
The objective of their system is to 
build decision trees from data in order 
to predict the outcome of new patients. 
The system has the ability to build 
(and incrementally refme) a classifi­
cation tree in an unsupervised manner. 
It can be used to predict patient out­
comes, and also provides information 
about the predictability of the out­
come and about the relevance of pa­
tient variables to the result. The au­
thors present in detail an algorithm to 
build the decision tree from data. Once 
the tree is built, the classification 
method of INC2.5 uses two param­
eters, a certainty threshold and a vari­
able threshold, each of which can be 
fine-tuned to optimize classification 
performance. The variable threshold 
determines the required level of con­
sistency required among cases in a 
category for a variable, and the cer­
tainty threshold determines whether 
there is enough evidence to make a 
prediction. The authors discuss how 
irrelevant variables can be detected 
and pruned from the decision tree. 
Such pruning has minimal effects on 
classification accuracy, while poten­
tially reducing the cost of data acqui­
sition. Bohren et al. demonstrate their 
classification algorithm in three do­
mains: breast cancer, general trauma, 
and low-back pain. The authors show 
that, given the data sets from these 
three domains, classification perfor­
mance gradually improves with the 
size of the decision tree until perfor­
mance reaches a plateau where addi­
tional cases do not improve the perf or-
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mance of the tree. They illustrate the 
effects of changing the certainty thresh­
old and the variable threshold, as well 
as the effect of reducing the number of 
input variables used, on the system's 
ability to classify cases. 

Doyle et al. [5] address the classifi­
cation problem using neural networks. 
Their objective is to develop a classi­
fier that can be used to identify liver­
transplant candidates who have a 
hepatoma, since standard screening 
techniques for this problem are not 
very sensitive. An interesting practi­
cal problem is that the database they 
used to train their neural networks 
contains a substantial portion of miss­
ing data. They use a network architec­
ture that contains a separate encoder 
layer to address the problem of miss­
ing data. This strategy introduces only 
the assumption that the fact that the 
data were missing was not in itself 
significant. The authors generated an 
ensemble of networks, rather than a 
single network, to improve the perfor­
mance of the classifier. To train and 
evaluate the resulting classifier, they 
used a database of 853 patients, 528 of 
which had no missing data. They de­
termined the sensitivity and specific­
ity of the resulting classifier with re­
spect to detecting hepatomas, and 
found a sensitivity of approximately 
88% and a specificity of around 75%. 
They concluded that their multivariate 
model offers substantial improvement 
in the detection rate of hepatoma. 

The authors did an interesting study 
on the effects of missing data in the 
training set. They compared classifi­
ers that were generated in three differ­
ent ways. The first was built using the 
full dataset of 853 patients, which in­
cluded missing data for some patients. 
The second was built using only the 
528 patients who had no missing data. 
The third was generated by taking the 
528 patients who had no missing data, 
and randomly deleting data from this 
dataset in a manner proportional to the 
distribution of missing data in the origi-

368 

nal dataset. Interestingly, they found 
that the three resulting classifiers 
showed no substantial differences in 
terms of their ability to detect 
hepatomas. They concluded that their 
method for handling missing data, us­
ing the encoder layer in the network, 
provided an effective means of con­
trolling the effects of missing data on 
the accuracy of the classifier. 

Su [7] addresses the often-cited 
problem that neural networks are 
viewed as so-called black boxes. The 
numerical weights in the network, and 
even the links among nodes, are diffi­
cult or impossible to interpret, and the 
classifications of the resulting systems 
are impossible to explain. Su proposes 
a class of neural networks called 
hyperrectangular composite neural 
networks. These two-layer networks 
are architected in such a way that they 
can be interpreted in the form of pro­
duction rules, with meaningful 
weights. Each node in the first layer 
checks the conjunction of a number of 
lower and upper bounds on a subset of 
the input variables. The second layer 
tests the disjunction of the nodes in the 
first layer. The author presents a new 
training algorithm that refines succes­
sively the bounds on links between 
input variables and intermediate nodes. 
The algorithm adds intermediate nodes 
as needed until all training examples 
are classified correctly. Once the net­
work has been generated, it can be 
translated easily into a number of rules 
that represent the conjunctions of 
bounds in the first layer of the net­
work. As an example of the classifier, 
the author used a data set of measure­
ments to classify the phase of progres­
sion in the development of Type-11 
diabetes mellitus in monkeys. The 
study showed that the resulting net­
work classified the test cases correctly 
in about 90% of cases. Moreover, the 
author indicated that the resulting net­
work could be used to describe the 
phase classification in terms of a lim­
ited set of rules even though, accord-

ing to the author, the relationships are 
complicated and experts have diffi­
culty defining them clearly. This pa­
per contributes a neural-network ar­
chitecture that addresses the inability 
of neural-network classification sys­
tems to explain their results or con­
tents. It would be interesting to see 
how the performance of networks with 
this architecture compares to that of 
classification systems based on other 
types of neural networks. 

Livieratos and Chappell [ 6] present 
a neural-network system that can de­
termine the level of abnormality of 
each part of an image. The goal of the 
system is to analyze medical images 
and to recognize abnormal regions of 
an organ, independent of the particular 
disease. The authors cite the impor­
tance of determining not only whether 
a particular region is abnormal, but 
also the degree of abnormality of the 
region. They develop a neural-net­
work method to generate, given an 
input vector representing an image, an 
output vector that corresponds to the 
level of abnormality of each element 
in the input vector. The output can be 
rendered as an image itself. Thus, the 
system can be used as an information­
extracting tool. Li vieratos and 
Chappell illustrate their method with a 
system for analyzing gamma-camera 
images of the lung. The images are 
normalized for lung size and shape, 
and have normalized pixel values. The 
system is trained with eight images of 
normal lungs. The authors presented 
the system with unseen test images 
and compared the results of the system 
with experts' diagnoses for the im­
ages. The paper shows a number of 
examples of output images that high­
light abnormal regions. The authors 
state that the system revealed hidden 
information and compared well with 
the experts, but they do not discuss the 
details of this comparison. 

Boon-Falleur et al. [3] present the 
results of an international effort to 
provide decision-support in the area of 
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ordering laboratory tests. They dis­
cuss progress on two separate systems 
in clinical use. The first system ad- · 
dresses the problem of inappropriate 
or inadequate I y justified test ordering. 
The authors developed a rule-based 
system that incorporates their 
institution's local guidelines and prac­
tice agreements concerning thyroid 
disease, infectious mononucleosis, and 
allergies, in order to assess whether 
the indications and clinical informa­
tion provided with a test order pro­
vided sufficient reason for ordering 
the test. In a preliminary evaluation of 
the system, they studied TSH tests that 
were ordered to rule in or rule out 
thyroid disease. For each order, they 
used the test result to determine 
whether thyroid disease was actually 
present. They found that in 17% of the 
orders, the system detected that the 
order was unjustified and no thyroid 
disease was present. However, the 
system also marked a small number of 
orders as unnecessary in which the test 
result actually showed thyroid disease. 
Upon further review, the authors cited 
insufficient documentation of the or­
ders as the reason the system ruled 
these unnecessary. This study shows 
considerable promise in terms of moni­
toring test-ordering behavior. 

In the same paper, Boon-Falleur et 
al. report on the transfer of LUMPS, a 
test-ordering system used in the liver­
transplant unit, from a hospital in Bir­
mingham, England, to a university 
hospital in Brussels, Belgium. The 
system takes data from the laboratory 
information system and applies local 
guidelines to help generate patient­
order sets. The original system in Bir­
mingham had been shown to reduce 
the number of test orders and the time 
it took staff to order tests. The transfer 
of the system required the user inter­
face to be made language-indepen­
dent. In addition, it required imple­
mentation of local protocols in the 
system's rule base. The system was 
used by hospital staff to order tests for 
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pre- and post-transplant patients on 
the liver unit. The authors showed 
that, initially, large numbers of orders 
were added to the order sets p-roposed 
by the system. Currently, about 83% 
of all orders are proposed by the sys­
tem. The authors found that overall 
order volume decreased only very 
slightly after introduction of the sys­
tem. Given the large number of addi­
tions to the system-generated order 
sets, the authors suggest that users 
may not have learned to trust the sys­
tem to propose the appropriate tests, 
and that with time the impact on order 
volume will improve. 

Do Amaral et al. [ 4] present a high­
performance, comprehensive diagnos­
tic systemfor clinical psychiatry called 
DSP (Diagnostic Decision-Support 
System for Psychiatry). This rule-based 
system helps classify psychiatric pa­
tients into diagnostic categories de­
fined by DSM-III-R. The authors are 
motivated by their observation that 
non-specialists are usually able to clas­
sify psychiatric patients into broad 
categories, but are unable to refme the 
diagnosis. They develop a system that 
combines uncertain with categorical 
reasoning. DSP initiates the diagnos­
tic process with a set of findings about 
the patient. It uses uncertain reasoning 
to delineate the problem, applying rules 
with certainty factors to compute an 
ordered list of possible hypotheses. 
Using a predefined hierarchy of dis­
eases in the domrun, the system groups 
hypotheses and selects the rules that 
will help differentiate among groups. 
At this point, the system switches to a 
deterministic strategy to focus on the 
diseases in the most likely diagnostic 
category; categorical criteria are ap­
plied to rule out diagnoses and con­
firm the final diagnosis. The system is 
helped here by the clearly defined di­
agnostic criteria in psychiatry. In an 
evaluation of the system on 53 cases 
from the literature, Do Amaral and 
colleagues show that the system's rules 
alone can rank the correct diagnosis as 
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the leading hypothesis in only 52.8% 
of cases. By applying the second phase 
of categorical diagnostic criteria after 
the initial ranking, they can improve 
this performance substantially, cor­
rectly identifying the diagnosis in 
73.6% of cases (where the diagnosis 
stated in the case description forms the 
gold standard). The authors hypoth­
esize that an exclusive rule-based strat­
egy cannot cover all the necessary 
steps required in psychiatric reason­
ing; they argue that the combination of 
uncertain and categorical reasoning is 
modeled after the diagnostic strategy 
used by general psychiatrists. In prac­
tical terms, one of their main contribu­
tions is a system that can form broad 
diagnostic categories and suggest ques­
tions that will help the non-specialist 
refine the diagnosis. The authors sug­
gest that the system be used by medi­
cal students, residents, or non-special­
ists (as performance is better than those, 
but worse than that of an expert psy­
chiatrist). 

Aliferis and Miller [ 1] address the 
issue that the term "heuristic," in the 
context of decision-support systems, 
is often interpreted as meaning infor­
mal or possibly incorrect. They ana­
lyze carefully the types of assump­
tions underlying medical decision-sup­
port systems, and propose a unifying 
definition of heuristics that encom­
passes formal and ad-hoc systems. The 
authors explore the various definitions 
of heuristics that have been given by 
dictionaries and by researchers in cog­
nitive science and in AI. They point 
out the need for guaranteed, verifiable 
solutions as the essence of non-heuris­
tic problem-solving systems. They 
claim that due to the complex nature of 
the problems addressed by medical 
decision-support systems, such prob­
lems generally cannot be solved in a 
guaranteed, verifiable manner. Heu­
ristic systems, as Aliferis and Miller 
define them, are systems that intro­
duce provisional assumptions, simpli­
fications, or less than ideal data or 
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methods. Interestingly, they distin­
guish between two types of heuristic 
systems in practice: those that are ex­
plicit about their assumptions (but for 
which the assumptions have not been 
verified, cannot be verified, or for 
which the violation of the assumptions 
in practice is considered of small sig­
nificance), and those that offerneither 
proof of correctness nor prerequisites 
for correctness. The latter systems, 
often based on expert knowledge or 
modeled after expert problem-solving 
methods, represent "initial efforts to 
give satisfactory but temporary solu­
tions to otherwise intractable prob­
lems." The authors propose means 
through which the latter type of heu­
ristic systems can be transformed into 
the former. They argue for system 
developers to "condition the validity 
of their systems upon well-defined 
and, eventually, testable conditions." 
They offer a number of reasons for the 
polarization in the medical decision­
support community around this issue, 
and discuss the necessity of collabora­
tion and communication among re­
searchers to address the tremendously 
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complex area of medical decision sup­
port. 

An interesting caveat with regard to 
the success of medical decision-sup­
port systems is illustrated by the fact 
that only one of the papers in this 
section describes systems that are in 
actual clinical use. Other systems dis­
cussed in this section are illustrated 
with medical examples, or have been 
evaluated on clinical cases, but have 
not found their way into clinical care. 
Numerous reasons have been proposed 
for the lack of transfer from the re­
search laboratory to the wards. How­
ever, given the promising results of 
many of the evaluation studies and the 
continuous need of health-care insti­
tutions to improve the quality and ef­
ficiency of care, the time appears right 
for researchers to make a strong effort 
to get their decision-support technol­
ogy adopted in clinical care. 
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