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1 Theintersection of
Imaging infor matics,
structural informatics
and neuroinformatics

The human brain is arguably the
most complex and least understood of
al organs in the body, yet rdaivey
recent technological advances are
rapidly openingupentirely new avenues
for understanding its structure and
function. Primary among these new
technologies are images, not only of
structure, but also of function, which
provideincreasingly detailed views of
the thinking brain. These and other
technologies have led to an explosion
of research results in neuroscience,
such that over 15,000 abstracts are
presented at the annua meeting of the
Society for Neuroscience (http://
www.sfn.org).

As in other biomedicd fields this
prdiferation of data has led to an
information glut that makes it
impossible for any one individua to
comprehend more than a small
fraction of theavailableresults. Yet it
is often argued that the only way we
will truly understand the brain is to
develop an integrated view that ties
together data at levels ranging from
genes to behavior.

Review

| maging I nformatics and the
Human Brain Project:
the Role of Structure

As aresponse to this dilemma the
Human Brain Project (HBP) [1-3]
was initiated in 1993 as aresult of an
Institute of Medicine Report [4]. The
goasof theHBPareto 1) develop re-
usable, generalizable and widely-
available software tools that are
specialized for neuroscience data and
knowledge, 2) develop methods for
integrating diverse forms of raw and
processed neuroscience information,
3) devel op Internet-based methodsfor
sharing and disseminating the
integrated information to promote
knowledgediscovery and thedevel op-
ment of distributed, large scalemodels
of brain function, and 4) apply these
tools and information systems to
research, clinical medicine and
education. Thehopeisthat by applying
informaticstoolsand techniquesto the
fragmented data and knowledge that
currently characterizeneuroscience, it
will be possible to regain a sense of
wholeness from the ever-diversifying
parts. Theaggregateresearchendeav-
or that results from these and similar
goasiscaled neuroinformatics [5].

One of the many neuroinformatics
researchquestionsthat arisefromthese
godsishow tointegratediverseforms
of raw and processed information.
Neuroscience data collected from
humans done come in multiple forms

(e.g., sequence, image-based, el ectro-
physiologicd, behaviora) a multiple
levels(gene, molecular, ultrastructural,
cdlular, neura circuit, whole brain),
and frommultipleindividuas. Thefact
that datacomefrommultipleindividuals
isparticularly difficult to addresssince
no two human brainsare exactly alike,
let aone the brains of non-human
species from which alarge amount of
dataareobtained. Muchof theresearch
effort in the HBP and other neuro-
sciencelabs dealswith the problem of
relating multiple brains.

Anatomy is the common frame of
referencefor nearly all HBP effortsat
integration, since anatomy in its
broadest definition embracesall levels
of structure from the molecular to the
macroscopic[6]. (Neuro)anatomy not
only provides an understanding of the
physicd organization of the brain, it
also can serve as a framework for
organizing al forms of neuroscience
data. This postulate is consistent with
a central tenet of modern biology,
namely that function can only be
understood in terms of the physica
structure that underlies it.

This centra role of anatomy is not
limited to neuroscience. In fact, an
understanding of the structure of the
body is essential for virtually all
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biomedical endeavorssincebothnormal
and abnormal functions can be
regarded as attributes of anatomical
structures. We therefore argue that
anatomy is a prime candidate for
organizing and integrating not only
neuroscience information but virtually
al other biomedica informationaswell.

Inorder to develop such an anatom-
ical (or structural) information frame-
work many informatics research
problemsmust be solved in areassuch
as representation, analysis, manage-
ment, visudization and dissemination
of anatomical information. Solutionsto
these problems require the application
and invention of new methodologies
rooted in computer science. These
problem areas include, for instance,
knowledge representation, image
understanding, graphics, visuaization,
databases and user interfaces.

Therichnessof theseproblemareas,
their broad applicability, and the
commonality of anatomical patternsat
multiple levels of organization have
prompted usto definestructural infor -
matics as a fidd for dedling with the
broad range of issues arising from the
representation, management and use
of information that pertains to the
physica organization of the body [7].
Weusethetermstructural asopposed
to anatomical informaticstoavoidthe
connotation of the term *anatomy”
which, despite its definition to the
contrary, is often limited to the
macroscopic (gross) level.

The subject of this edition of the
Y earbook is imaging informatics [8],
which can be defined as the develop-
ment of methods for organizing, man-
aging, retrieving, andyzing and visud-
izingimages. |magesof al sortsobtained
from any or dl regions of the body are
the centrd focusof imaging informatics.

From the point of view of structural
informaticsimagesareonly onesource

(though probably the most important
one) of data about anatomical
structures. Other sources include, for
example, gene sequences, nuclear
magnetic resonance spectroscopy, X-
ray crystallography, thephysica exam,
endoscopy, and auscultation.

The focus of neuroinformatics is
understandingthebraininall itsaspects
— anatomy, pathology, function
(including behavior). Thus,imagesand
anatomy areimportant components of
neuroinformatics research, but they
are not the only ones. Othersinclude,
for example, genetics, biochemistry,
physiology, psychology, pathology,
neurology, radiology and neurosurgery.

The subject of this review is the
intersection of these three fields
(structural-, imaging- and neuro
informatics) within the context of the
HBP. Of the 26 projects currently
listed on the HBP research grants
page (http://www.nimh.nih.gov/
neuroinformati cs/researchgrants.cfm)
19 use images as a primary source of
data. Welimit our review primarily to
these and related projects because 1)
we are most familiar with HBP work,
2) the HBP provides exemplary
research projects in many relevant
areas, 3) the HBP represents the
primary nationd effortintheapplication
of informatics to neuroscience, and 4)
wewishto makethewider informatics
community more aware of the HBP.
However, we point out that a large
amount of imagerelatedresearchdeas
with the brain, as evidenced by any
issue of journals such as IEEE
Transactions on Medical Imaging,
andalargeamount of non-HBPneuro-
science research involves the use of
images and anatomica information.

The paper is organized into three
basic sections. structural imaging,
functiona imaging, and image-based
brain information systems. Structural
imaging provides the anatomical

substrate on which thefunctional data
can be mapped, analogous to geo-
graphic information systems, which
map variouskinds of datato the earth.
However, for brain mapping the
problemiscomplicated by thefact that
no two brains are dike.

2 Imaging the structure of
thebrain

Images are amost exclusively the
source of data for visualizing and
recongtructing theanatomy of thebrain.
Different imaging modalities provide
complementary and often highly
detailed anatomical information. All
moddities are either inherently digital
or can be converted to digital form by
film scanning.

Traditional image sources are
photographs of gross dissections, or
microscopic sections that may be
frozen (cryosections) or histochemi-
caly stained to emphasize certain
structural components such as myelin
[9]. Electron microscopy reveds the
ultrastructure of the brain at the level
of synaptic connections and cyto-
plasmic inclusions [10]. Immunocyto-
chemical and DNA-hybridization
techniques depict the digtribution of
specific proteins or messenger RNA,
thereby alowing the expresson of
specific genes to be observed in
different parts of the brain during
development, maturity and senility [ 11].
From the image processing point of
view al these image sources can be
regarded as 2-D image sections.

In the living brain, computed tomo-
graphy (CT) digtinguishes different
structures by virtue of their radio-
density, magnetic resonance imaging
(MRI) distinguishesstructuresby their
differentia responsetoradiofrequency
pulsesappliedwithinagraded magnetic
field, and magnetic resonance veno-
graphy (MRV), and arteriography
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(MRA) emphasize veins and arteries
by dtering the parameters of theradio
frequency pulses [12]. An HBP-
funded effort at Caltech isdeveloping
advanced methods for in vivo MR
microscopicimaging that isbeing used
to generate high resolution images of
the developing embryo [13].

Traditional image sources provide
2-D views of parts of the brain.
However, because the brain is three-
dimensona, themost informative data
come from techniques that either
directly or indirectly image the entire
3-D volumeof interest. Therefore, most
current brain imaging research is
concernedwith 3-D imagevolumedata.

Informatics issues that arise when
dedlingwith 3-D Structurd brainimages
indudeimageregistration, spatial rep-
resentation of anatomy, symbolicrepre-
sentationof anatomy, integrationof spatid
and symbolic anatomic representations
in atlases, anatomica variation, and
characterization of anatomy. All but
the first of these issues ded primarily
withanatomical structure, andtherefore
fdl inthefied of sructura informetics.
They could dso be thought of as being
part of imaging informaticsand neuroin-
formetics. Dependsonthepoint of view.

2.1 Image registration
Imagevolumedataarerepresented
inthecomputer by a3-D volumearray,
inwhich each voxel (volume-element,
analogous to pixel in 2-D) represents
theimageintensityinasmall volumeof
space. In order to accurately depict
brain anatomy, the voxels must be
accurately registered (orlocated) inthe
3-D volume, and separately acquired
image vol umes from the same subject
must be registered with each other.

2.1.1 Voxel registration
Technologies such as CT, MRI,
MRV and MRA (section 2) are
inherently 3-D: the scanner generally
outputs a series of image dices that

can easily be reformatted as a 3-D
volumearray, oftenfollowing aignment
agorithms that compensate for any
patient motion during the scanning
procedure. Confocal microscopy [14],
which generates a 3-D image volume
through a tissue section, is also
inherently 3-D, as is eectron tomo-
graphy, which generates 3-D images
from thick electron-microscopic
sections using techniques smilar to
those used in CT [15].

Two-dimensiona images can be
convertedto 3-D volumesby acquiring
aset of closely spaced paralldl sections
through atissue or wholebrain. Inthis
case the problem is how to aign the
sections with each other. For whole
brain sections (either frozen or fixed)
the standard method isto embed a set
of thinrodsor stringsinthetissueprior
to sectioning, to manudly indicate the
lation o these fiducials on each
section, thentolinearly transformeach
dicesothat thecorrespondingfiducias
lineupin 3-D [16]. A popular current
exampleof thistechniqueistheVisible
Human, inwhichaseriesof transverse
diceswereacquired, then reconstruc-
ted to give afull 3-D volume [17].

It is difficult to embed fiducia
markers at the microscopic level, so
intrinsic tissue landmarks are often
usedasfiducias, butthebasicprinciple
issimilar. However, inthis casetissue
distortion may be a problem, so non-
linear transformationsmay berequired.
For example Fida and Harris [18§]
havedeveloped aninterfacethat alows
the user to indicate, on electron
microscopy sections, corresponding
centers of small organelles such as
mitochondria. A non-linear transforma-
tion (warp) is then computed to bring
the landmarks into registration.

Anapproach being pursued (among
other approaches) by the National
Center for Microscopy and Imaging
Research (http://ncmir.ucsd.edu/)

combines recongtruction from thick
serial sections with eectron tomo-
graphy [19]. In this case the tomo-
graphic technique is applied to each
thick section to generate a 3-D digita
dab, after which the dabs are aligned
with each other to generate a 3-D
volume. The advantages of this
approach over the standard serial
section method arethat the sectionsdo
not need to be as thin, and fewer of
them need be acquired.

Andternativeapproachto3-D voxel
regigtrationfrom2-D imagesisstereo-
matching, a technique developed in
computer vision that acquiresmultiple
2-D images from known angles, finds
corresponding points on the images,
and uses the correspondences and
known cameraanglesto compute 3-D
coordinates of pixels in the matched
images. Thetechniqueisbeing applied
to thereconstruction of synapsesfrom
e ectronmicrographsby aHBPcollab-
oration between computer scientists
and biologists a the University of
Maryland [20].

2.1.2 Volume registration

A related problem to that of
aligning individua sections is the
problem of aligning separate image
volumes from the same subject, that
is,intra-subject alignment. Because
different image modalities provide
complementary information, it is
common to acquire more than one
kind of image volume on the same
individual. For example, in our own
HBP work, we acquire an MRI
volume dataset depicting cortical
anatomy, an MRV volume depicting
veins, and an MRA volumedepicting
arteries [21]. By "fusing" these sepa-
rate modalities into a single common
frameof reference (anatomy, asgiven
by the MRI dataset), it is possible to
gain information that is not apparent
from one of the modalities alone. In
our casethefused datasetsare used to
generate a visualization of the brain
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surface asit appears a neurosurgery,
inwhichtheveinsand arteries provide
prominent landmarks.

When intendty vaues are amilar
across moddlities, linear dignment can
beperformedautomaticaly by intengty-
based optimization methods [22, 23].
Whenintensity vauesarenot Smilar (as
isthecasewithMRA, MRV and MRI),
images can be aligned to templates of
the same modalities that are already
digned[24, 25]. Alternativey, landmeark-
based methods can be used. The
landmark-based methodsaresmilar to
those used to dlign serid sections, butin
this case the landmarks are 3-D points.
The Montred Register Program [26]
(whichcandsodonorHinear regidration,
as discussed in section 25.1) is an
example of such a program.

2.2 Spatial representation of
anatomy

The reconstructed 3-D image
volume can be visudized directly using
volumerenderingtechniques[27]. Itcan
aso be given as input to image-based
techniquesfor warpingtheimagevolume
of one brain to other, as described in
section2.5.1. However, morecommonly
the image volume is processed in order
to extract an explicit spatial (or
quantitative) representation of brain
anatomy. Suchanexplicit representation
permitsimproved visuaization, quanti-
tative analysis of brain structure,
comparison of anatomy acrossapopu-
lation, and mapping of functional data.
Itisthusacomponent of most research

involving brain imaging.

Extraction of spatid representations
of anatomy, intheform of 3-D surfaces
or volume regions, is accomplished by
segmenting (or isolating) braingtructures
from the 3-D image volume. Fully
automated segmentation is an unsolved
problem, asattested to by thenumber of
papers about this subject in IEEE
Transactions on Medical Imaging.
However, becauseof the high qudity of

MRI brain images, a great ded of
progresshasbeen madeinrecent years,
infact, severa software packagesdo a
credible job of automatic segmentation,
particularly for norma macroscopicbrain
anatomy in corticad and sub-cortica
regions [28-34]. The HBP-funded
Internet Brain Segmentation Repository
[35] isdeve opingarepository of ssgmen
ted brain images to use in comparing
these different methods.

Popular segmentation and recon-
struction techniques include recon-
struction from seria sections, region-
based methods, edge-based methods,
model or knowledge-based methods,
and combined methods.

2.2.1 Reconstruction from serial
sections

The classic approach to extracting
anatomy is to manualy or semi-
automatically trace the contours of
structures of interest on each of a
series of aligned image dices, then to
“tile” asurface over the contours[36].
Thetiled surfaceusually consistsof an
array of 3-D points connected to each
other by edgestoformtriangul ar facets.
The resulting 3-D surface mesh is
then in aform where it can be further
analyzed or displayed using standard
3-D surfacerendering techniques[37].

Neither fully automatic contour
tracing nor fully autométic tiling has
been satisfactorily demonstratedinthe
general case. Thus, semi-automatic
contour tracing followed by semi-
automatic tiling remains the most
common method for reconstruction
fromseria sections, and reconstruction
from serid sectionsitsalf remainsthe
method of choice for extracting
microscopic 3-D brain anatomy [18].

2.2.2 Region-based and edge-
based segmentation

This and the following sections
primarily concentrateon segmentation
at the macroscopic level.

In region-based segmentation
voxels are grouped into contiguous
regions based on characteristics such
as intengity ranges and similarity to
their neighbors[38]. A commoniinitia
gpproachtoregion-based segmentation
is first to classfy voxels into a small
number of tissue classes such as gray
matter, whitematter, cerebrospind fluid
and background, then to use these
classifications as a basis for further
segmentation[39, 40]. Another region-
based approach is called region-
growing, in which regions are grown
from seed voxels manually or
automaticaly placed within candidate
regions[21, 41]. Theregionsfound by
any of these approaches are often
further processed by mathematical
morphology operators[42] to remove
unwanted connections and holes[43].

Edge-based segmentationisthecom-
plement to region-based segmentation:
intendty gradientsareusedtosearchfor
and link organ boundaries. In the 2-D
case contour-following connects adja
cent points on the boundary. Inthe 3-D
case isosurface following or marching
cubes [44] connects border voxdlsin a
region into a 3-D surface mesh.

Both region-based and edge-based
segmentation areessentially low-level
techniquesthat only look atlocal regions
in the image data.

2.2.3 Model- and knowledge-
based segmentation

The most popular current method
for medica image segmentation, for
the brain as well as other biologica
structures, is the use of deformable
models. Based on pioneering work
caled "Snakes' by Kass, Witkin and
Terzopoulos [45], deformable models
have been developed for both 2-D and
3-D. In the 2-D case the deformable
model is a contour, often represented
asasimple set of linear segments or
aspline, whichisinitialized to approxi-
mate the contour on the image. The
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contour isthen deformed according to
a cost function that includes both
intringc terms proscribing how much
the contour can distort, and extrinsic
terms that reward closenessto image
borders. Inthe3-D casea3-D surface
(often atriangular mesh) is deformed
inasimilar manner. There are severa
examples of HBP-funded work that
use deformable models for brain
segmentation [28, 30, 31, 41].

Anadvantageof deformablemodels
is that the cost function can include
knowledge of the expected anatomy
of the brain. For example, the cost
function employed in the method
developed by MacDonad [30] includes
a term for the expected thickness of
thecortical sheet. Thus, thesemethods
can become somewhat knowledge-
based, where knowledge of anatomy
is encoded in the cost function.

An dternative knowledge-based
approach explicitly records shape
information in a geometric constraint
network (GCN) [46], which encodes
local shapevariationbased onatraining
set. The shape constraints define
search regions on the image in which
to search for edges. Found edges are
then combined with the shape
congtraints to deform the model and
reduce the size of search regions for
additional edges[47,48]. Onepotentia
advantage of this sort of model over a
pure deformable model is that
knowledgeis explicitly represented in
the model, rather than implicitly
represented in the cost function.

2.2.4 Combined methods

Most brain segmentation packages
use a combination of methods in a
sequentia pipeine. For example, inour
own recent work we first use a GCN
model to represent the overall cortical
"envelope", excluding the detailed gyri
and sulci  [32]. The modd is semi-
automatically deformedtofitthecortex,
then used as a mask to remove non-

cortex such as the skull. Isosurface
following isthen applied to themasked
region to generatethe detailed cortical
surface. The model is aso used on
aligned MRA and MRV images to
meask out non-cortica veinsandarteries
prior to isosurface following. The
extracted cortical, vein and artery
surfacesarethen rendered to produce
a composite visudization of the brain
as seen at neurosurgery.

MacDonald et al. describe an
automatic multi-resolution surface
deformation technique called ASP
(Anatomic Segmentation using
Proximities), in which an inner and
outer surface are progressively
deformed to fit the image, where the
cost function includes image terms,
model-based terms, and proximity
terms [30]. Dale et al. describe an
automated approach that is imple-
mented in the FreeSurfer program
[28, 49]. Thismethod initidly findsthe
gray-white boundary, then fits smooth
gray-white (inner) and white-CSF
(outer) surfaces using deformable
models. Van Essen et . describe the
SureFit program [31], which findsthe
cortical surface midway between the
gray-white boundary and the gray-
CSF boundary. Thismid-level surface
iscreated from probabilistic represen-
tations of both inner and outer
boundaries that are determined using
imageintengity, intengty gradients, and
knowledge of cortical topography.
Other software packagesa socombine
variousmethodsfor segmentation[33,
41, 50, 51].

2.3 Symbolic representation of
anatomy

Given segmented brain structures,
whether at the macroscopic or
microscopic level, and whether
represented as 3-D surfacemeshesor
extracted 3-D regions, it is often
desirable to attach labels (names) to
thestructures. If thenamesaredrawn
fromacontrolled terminology they can

be used as an index into a database of
segmented structures, thereby pro-
vidingaquditativemeansfor comparing
brains from multiple subjects.

If the terms in the vocabulary are
organized into symbolic qudlitative
modeds ("ontologies') of anatomica
concepts and relationships, they can
support systems that manipulate and
retrieve segmented brain structuresin
"intelligent” ways. For example, a dy-
namic scenegenerator could assemble
3-D scenesof varioussegmented brain
structures, overlaying them with
anatomic names [52, 53].

If the anatomical ontologies are
linked to other ontol ogiesof physiology
and pathology they can provide
increasingly sophisticated knowledge
about the meaning of the various
images and other data that are
increasingly becoming available in
online databases (section 4) It isour
belief that this kind of knowledge (by
thecomputer, asopposedtotheneuro-
scientist) will be required in order to
achieve the seamlessintegration of all
forms of data envisioned by the HBP.

As in other biomedica fields the
HBP has recognized the need for
controlled vocabularies and ontologies
torelate multiple sources of data. This
recognitionisevidenced by thekeynote
speechesat the 2001 spring meeting of
the HBP [54, 55]. As in the spatia
case it is commonly accepted that
neuroanatomy providesthemost logical
organizationa framework; inthiscase,
however, neuroanatomy isrepresented
symbolicaly rather than spatially.

At the most fundamental level
NominaAnatomica [56] anditsrecent
successor, Terminologia Anatomica
[57] provideaclassification of officidly
sanctioned terms that are associated
with macroscopic and microscopic
brain structures. This canonical term
list, however, has been substantially
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expanded by synonymsthat arecurrent
in various fields of the neurosciences,
and hasaso been augmented by alarge
number of new terms that designate
Sructures omitted from Terminologia
Anatomica. Many of theseadditionsare
presentinclinica controlledterminolo-
ges(MeSH[58],SNOMED [59], Read
Codes [60], GALEN [61]). Unlike
Terminologia, which only exigsin hard
copy, these vocabularies are entirdy
computer-based, and therefore lend
themselves for incorporation in HPB
related gpplications.

The most complete primate
neuroanatomical terminology is
NeuroNames, developed by Bowden
and Martin at the University of
Washington[62]. NeuroNames, which
is included as a knowledge source in
the National Library of Medicine's
Unified Medica Language System
(UMLS)[63],isprimarily organized as
apart-of hierarchy of nested structures,
with links to a large set of ancillary
termsthat do not fit into the strict part-
of hierarchy. Other neuroanatomical
terminol ogieshavea so been devel oped
[64-67]. A chalengefor theHBPisto
either comeupwithasingleconsensus
terminology or todevelop Internet tools
that alow transparent integration of
distributed but commonly-agreed on
terminology, with local modifications.

Classification and ontology projects
to-date have focused primarily on
arranging the terms of a particular
domain in hierarchies. As we noted
with respect to the evaluation of
Terminologia Anatomica [68],
insufficient attention has been paid to
the relationships among these terms.
Terminologia, as well as anatomy
sections of the controlled medical
terminologies, mix -isa- and -part of-
relationshi psin the anatomy segments
of their hierarchies. Although such
heterogeneity does not interfere with
using these term lists for keyword-
based retrieval, these programs will

fail to support higher level knowledge
(reasoning) required for knowledge-
based applications.

In our own Structura Informatics
Group at theUniversity of Washington
we are addressing this deficiency by
developing a Foundational Model of
Anatomy (FMA), which we define as
acomprehensivesymbolicdescription
of the structural organization of the
body, including anatomica concepts,
their preferred namesand synonyms,
definitions, attributesand relaionships
[6, 69].

The FMA is being implemented in
Protégé-2000, aframe-basedknowledge
acquistionsystemdeve opedat Stanford
[70,71]. InProtégéanatomica concepts
are arranged in class-subclass hierar-
chies, with inheritance of defining
atributes dong the isa link, and other
relationships(e.g., parts, branches, spatid
adjacencies) represented as additional
dotsin the frame. The FMA currently
consistsof over 60,000 concepts, repre-
sented by 85,000 terms arranged in 75
types of relationships that represent all
Sructures except the brain visble to 1
mm, and many microscopic and mole-
cular sructuresaswell. Wearecurrently
in the process of integrating
NeuroNames with the FMA as a
Foundationa Modd of Neuroanatomy
(FMNA) [72)].

Our belief is that the FMNA, as an
integra component of the FMA for the
entire body, will prove useful for
symbolicaly organizing and integrating
neuroscience information. But in order
to answer non-trivia queriesin neuro-
stienceandtodevelop"smart tools' that
rely on deep knowledge, additiona
ontologiesmust dso bedeve oped, anong
other things, for physiologica functions
mediated by neurctrangmitters, pathologi-
ca processesandtheir clinica manifes-
tations as well as radiological ap-
pearances, with which they correlate.
The relationships that exist between

these concepts and anatomical parts of
thebrainmust dsobeexplicitly modeed.
Next generation HBP efforts that link
the FMNA and other anatomical
ontdlogies with separately devel oped
functional ontologies such asthe bio-
physical description markup language
(BDML) being developed a Cornell
[73] will be needed in order to
accomplish this type of integration.

2.4 Atlases
Spatiad representations of neuro-

anatomy, in the form of segmented
regionson 2-D or 3-D images, or 3-D

surfacesextracted fromimagevolumes,
are often combined with symbolic

representationstoform digital atlases.

A digitd atlas (which for this review
refers to an atlas created from 3-D

imagedatatakenfromreal subjects, as
opposed to artists illustrations) is
generaly created from a single indi-

vidual, which therefore serves as a
"canonica" instance of the species.

Traditionally, atlases have been
primarily used for education, and most
digital atlases are used the same way.

For example, the Digitd Anatomist
Interactive Atlasof thebrain[74] was
crested by outlining regions of interest
on 2-D images (many of which are
snapshotsof 3-D scenesgenerated by
reconstruction from seria sections)
andlabdlingtheregionswithterminolo-
gy fromNeuroNames. Theatlas, which
is available both on CD-ROM and on
theweb, permitsinteractive browsing,
where the names of structures are
given in response to mouse clicks;
dynamiccregtionof "pindiagrams’, in
which selected labels are attached to
regions on the images, and dynam-
icaly-generated quizzes, in which the
user is asked to point to structures on
the image [75].

An example of a 3-D brain atlas
created from the Visble Human is
Voxdman[76], inwhich eachvoxd in
theVisbleHuman headislabeledwith
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thename of an anatomic structureina
"generdized voxel modd" [77], and
highly-detailed 3-D scenesaredynam-
icadly generated. Severa other brain
atlases have also been developed pri-
marily for educationa use[78, 79].

In keeping with the theme of
anatomy as an organizing framework,
atlases have also been developed for
integrating functional data from
multiple studies [65, 80-85]. In their
original published form these atlases
permit manual drawing of functiona
data, suchasneurotransmitter distribu-
tions, onto hardcopy printouts of brain
sections. Many of these atlases have
been or are in the process of being
converted to digital form. The
Laboratory of Neuroimaging (LONI)
at UCLA has been particularly active
in the development and andysis of
digital atlases [86], and the Cdtech
HBP has recently released a web-
accessible 3-D mouse atlas acquired
with micro-MR imaging [87].

The most widdly used human brain
alasisthe Tdarachatlas, based on post
mortem sections from a 60-year-old
woman [88]. This atlas introduced a
proportional coordinate system (often
cadled"Tdarach gpace") which conssts
of 12 rectangular regions of the target
brain that are piecewise affine trans-
formedto corresponding regionsinthe
atlas. Using these transforms (or a
smplifiedsingleaffinetransformbased
on the anterior and posterior
commissures) a point in the target
brain can be expressed in Taairach
coordinates, and thereby related to
smilarly transformed pointsfromother
brains. Other human brain atlaseshave
also been developed [89-93].

2.5 Anatomical variation
Braininformation systemsoftenuse
atlasesasabasi sfor mappingfunction-
a data onto a common framework,
much like geographic information
systems (GISs) use the earth as the

basis for combining data. However,
unlike GISs, braininformation systems
must deal with the fact that no two
brains are exactly dike, especidly in
the highly folded human cerebral
cortex. Thus, not only do neuroinfor-
matics researchers have to develop
methods for representing individual
brain anatomy, they also must develop
methods for relating the anatomy of
multiple brains. Only by developing
methods for relating multiple brains
will it bepossibletogenerateacommon
anatomical frame of reference for
organizing neuroscience data. Solving
thisproblemis currently amagjor focus
of work in the HBP.

Two general approaches for
quantitatively dealing with anatomic
variation can bedefined: 1) warping to
a template atlas, and 2) population-
based atlases. Variation can also be
expressed in a qualitative manner, as
described in section 2.6.1.

2.5.1 Warping to a template atlas

The most popular current
guantitative method for dealing with
anatomic variation is to deform or
warp an individua target brain to a
single brain chosen as atemplate. If
thetemplate brain has been segmen-
ted and labeled as an atlas (section
2.4), and if the regidtration of the target
brain to the template is exact, then the
target brain will be automatically
segmented, and any data from other
sudies that are associated with the
template brain can be automaticaly
registered with the target brain by
inverting the warp [94, 95]. Such a
procedurecouldbevery useful for surgicd
planning, for example, since functional
areas from patients whose demo-
graphics match that of the surgical
patient could be superimposed on the
patient's anatomy [96].

The problem of course comeswith
theword, "exact". Sinceno two brains
are even topologicaly dike (sulci and

gyri are present in one brain that are
not present in another) it isimpossible
to completely register one brain to
another. Thus, the research problem,
which is very actively being pursued
by many HBP researchers [94], is
how toregister twobrainsasclosely as
possible. Methods for doing this can
be divided into volume-based warping
and surface-based warping.

Volume-based warping. Pure
volume-based registration directly
registerstwoimagevolumes, without
the pre-processing segmentation
step. Whereas intra (single)-patient
registration (section 2.1.2) estab-
lishes a linear transformation be-
tween two datasets, inter (multiple)-
patient regi stration establishesanon-
linear transformation (warp) that
takes voxels in one volume to
corresponding voxels in the other
volume. Because of the great
variability of thecerebral cortex pure
volume-based registration is best
suited for sub-cortical structures
rather than the cortex. As in the
linear case there are two basic ap-
proaches to non-linear volume
registration:  intensity-based and
landmark-based, both of which
generally useeither physically-based
approaches or minimization of acost
functionto achievethe optimal warp.

Theintensity-based approach uses
characteristics of the voxels them-
selves, generdly without the segmenta:
tionstep, tonon-linearly digntwoimage
volumes [29, 95, 97, 98]. Most start by
removing the skull, which often must
be done manually.

The landmark-based approach is
analogous to the 2-D case: the user
manually indicates corresponding
pointsinthetwo datasets (usualy with
the aid of three orthogonal views of
theimagevolumes). Theprogramthen
brings the corresponding points into
registration while carrying along the
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intervening voxe data. The Montreal
Register program [26] can do non-
linear 3-D warps, ascanthe Edgewarp-
3D program [99], which isagenerdi-
zation of the Edgewarp program
developed by Bookstein [100].

A variation of landmark-based
warping matches curves or surfaces
rather than points, thenusesthesurface
warps as abasisfor interpolating the
warpforintervening voxels[101, 102].

Surface-based warping. Sur-
face-based registration is primarily
used to register two cortical surfaces.
The surface is first extracted using
techniques described in section 2.2,
thenimage-based or other functional
data are “painted”’ on the extracted
surfacewherethey arecarried along
withwhatever deformationisapplied
to the surface. Since the cortical
surface is the most variable part of
the brain, yet the most interesting
for many functional studies,
considerable research is currently
being done in the area of surface-
based registration [103].

Itisvery difficultif notimpossible
tomatchtwo surfacesintheir folded
up state, or to visualize al their
activity. (The cerebral cortex gray
matter can be thought of as a 2-D
sheet that is essentially crumpled up
to fit inside the skull). Therefore,
much effort has been devoted to
“reconfiguring” [31] the cortex so
that it is easier to visualize and
register. A prerequisite for these
techniques is that the segmented
cortex must betopologically correct.
The programs FreeSurfer [28],
Surefit[31], ASP [30] and othersall
produce surfaces suitable for
reconfiguration.

Commonreconfiguration methods
include inflation, expansion to a
sphere, and flattening. Inflation
uncrumplesthedetailed gyri and sulci

of the folded surface by partially
blowing the surface up like aballoon
[31, 33, 49]. The resulting surface
looks like a lissencephalic (smooth)
brain, in which only the major lobes
arevisible, and the original sulci are
painted on the surface as darker
intensity curves. Thesemarks, along
with any functional data, are carried
along in the other reconfiguration
methods as well.

Expansion to a sphere further
expandstheinflated brainto asphere,
againwith painted linesrepresenting
the origina gyri and sulci. At this
point it issimpleto define asurface-
based coordinate system as a series
of longitude-latitude linesreferred to
a common origin. This spherical
coordinate system permits more
precise quantitative comparison of
different brains than 3-D Talairach
coordinates because it respects the
topology of thecortical surface. The
surface is aso in a form where
essentially 2-D warping techniques
canbeappliedto deformthegyri and
sulci marked on the sphere to a
template spherical brain.

The third approach is to flatten
the surface by making artificial cuts
on the inflated brain surface, then
spreading out the cut surface on a 2-
D plane while minimizing distortion
[31,49, 104]. Sinceitisimpossibleto
eliminate distortion when projecting
asphereto aplane, multiple methods
of projection have been devised, just
as there are multiple methods for
projecting the earth’s surface [94].
In al cases, the resulting flat map,
likea2-D atlasof theearth, iseasier
tovisualizethana3-D representation
since the entire cortex is seen at
once. Techniques for warping one
cortex to another are applicable to
flat maps as well as spherical maps,
and the warps can be inverted to
map pooled data on the individual
extracted cortical surface.

The problem of warping any of
these reconfigured surfaces to a
template surfaceisstill an active area
of research becauseit isimpossibleto
completely match two cortical
surfaces. Thus, most approaches are
hierarchica, inwhichlarger sulci such
as the lateral and central sulcus are
matchedfirst, followed by minor sulci.

2.5.2 Population-based atlases

Themain problemwithwarpingtoa
template atlas is deciding which atlas
to use as a template. Which brain
should be considered the “canonical”
brain representing the population? The
widely used Talairach atlas is based
on a 60 year-old woman. The Visible
Human male was a convict and the
female was an older women. What
about other populations such as
different racial groups? These con-
siderations have prompted severd
groups to work on methods for
developing brain atlases that encode
variation among a population, be it
theentire popul ation or selected sub-
groups. The International Consortium
for Brain Mapping (ICBM), a
collaboration among several brain
mapping institutions headed by
Mazziotta at UCLA (http://
www.loni.ucla.edu/ICBM), is
collecting large numbers of normal
brain image volumes from collabo-
rators around the world [105]. To
date several thousand brain image
volumes, many with DNA samples
for later correlation of anatomy with
genetics, are stored on amassivefile
server. As data collection continues
methods are under development for
combining these data into population-
based atlases.

A goodhigh-level descriptionof these
methodscan befoundinareview article
by Toga and Thompson [94]. In that
articlethreemainmethodsaredescribed
for devel oping popul ation-based atlases:
density-based, label-based and
defor mation-based approaches.
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In thedensity-based method, a set
of brains is first transformed to
Taairach space by linear registration.
Corresponding voxels are then
averaged, yielding an "average' brain
that preserves the mgjor features of
thebrain, but smoothesout thedetailed
sulci and gyri. The Montreal average
brain, which is an average of 305
normal brains[106], is congtructed in
thisway. Althoughnot detailed enough
to permit precise comparisons of
anatomical surfaces, it neverthelessis
useful as a coarse means for relating
multiplefunctiona sites. For example,
in our own work we have mapped
cortical language sites from multiple
patients onto the average brain,
alowing a rough comparison of their
distribution for different patient
subclasses [107].

In the label-based approach, a
series of brains are segmented, and
thenlinearly transformedto Talairach
space. A probability map is
constructed for each segmented
structure, suchthat at each voxel the
probability can befound that agiven
structure is present at that voxel
location. This method has been
implementedinthe Talairach Demon,
an Internet server and Java client
developed by Fox et a. aspart of the
ICBM project [108]. A web user
inputs one or more sets of Talairach
coordinates, andthe server returnsa
list of structure probabilities for those
coordinates.

In the warp-based method, the
satistical properties of deformation
fields produced by non-linear warping
techniques(section2.5.1) areanayzed
to encode anatomical variation in
populationsubgroups[ 109, 110]. These
atlases can then be used to detect
abnormal anatomy invariousdiseases.

2.6 Characterization of anatomy
Themainreasonfor finding waysto
represent anatomy is to examine the

relationship between structure and
function in both health and disease.
For example, how doesthe branching
pattern of the dendritic tree influence
thefunction of thedendrite? Doesthe
pattern of cortical folds influence the
distribution of language areas in the
brain? Does the shape of the corpus
callosum relate to a predisposition to
schizophrenia? Can subtle changesin
brain structure be used as a predictor
for the onset of Alzheimer’ s disease?
Thesekindsof questionsarebecoming
increasingly possible to answer with
theavailability of themethodsdescribed
in the previous sections. However, in
order to examine these questions
methods must be found for charac-
terizing and classifying the extracted
anatomy. Both qualitative and
quantitative approaches are being
developed.

2.6.1 Qualitative classification
The classica approach to charac-
terizing anatomy is for the human
biologist to group individua structures
intovariousclassesbased on perceived
patterns. This approach is gill widely
used throughout science since the
computer hasyettomatchthe pattern
recognitionabilitiesof thehumanbrain.

An example classfication a the
cdlular leve isthe60-80 morphologica
cell types that form the basis for
understanding the neural circuitry of
theretina(whichisanoutgrowth of the
brain) [111]. At the macroscopic level
Ono hasdevel oped anatlasof cerebral
sulci that can be used to characterize
an individud brain based on sulca
patterns [112].

If theseand other classificationsare
given systematic namesand areadded
to the symbolic ontologiesdescribedin
section 2.3 they can be used for
"intelligent” index and retrieval, after
which quantitative methods can be
used for moreprecisecharacterization
of structure-function relationships.

2.6.2 Quantitative classification.
Quantitative characterization of
anatomy isoften calledmor phometrics
[113] or computational neuro-
anatomy [114]. Quantitative charac-
terization permits more subtle classi-
fication schemesthanarepossiblewith
qualitative methods, leading to new
insights into the relation between
structure and function, and between
structure and disease [94, 115].

For example, at the ultrastructural
leve stereology, which isadtatistical
method for estimating from sampled
data the distribution of structural
componentsinavolume[116], is used
to estimatethedensity of objectssuch
as synapses in image volumes
reconstructed from serial electron
micrographs [18].

Atthecdlular level Ascoli etdl. are
developingtheL-neuron project, which
atemptstomode dendriticmorphology
by asmall set of parameterized genera-
tion rules, where the parameters are
sampledfrom distributionsdetermined
from experimental data [114]. The
resulting dendritic models capture a
large set of dendritic morphologica
classes from only a small set of
variables. Eventudly the hope is to
generate virtual neura circuits that
can smulate brain function.

At the macroscopic level
landmark-based methods have
shown changes in the shape of the
corpus callosum associated with
schizophreniathat arenot obviousfrom
visua ingpection [117]. Probabilistic
atlas-based methodsare being used to
characterize growth patterns and
disease-specific structura abnormali-
ties in diseases such as Alzheimer's
and schizophrenia [118]. As these
techniques become more widely
available to the clinician they should
permit early diagnosis and hence
potential treatment for these
debilitating diseases.
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3 Imaging thefunction of the
brain

Perhaps a greater revolution than
structura imaging hascomeabout with
methods that reveal the functioning of
thebrain, particularly cognitivefunction
a the macroscopic level (i.e, the
thinking brain). It is now routiney
possble to put a normd subject in a
scanner, to give the person a cognitive
task, such ascounting or object recogni-
tion, and to observe which parts of the
brainlight up. Thisunprecedented ability
to observe the functioning of the living
brain opens up entirely new avenues
for exploring how the brain works.

Functiona moddlitiescanbed assified
as image-based or non-imagebased.
Inboth casesitistaken asaxiomaticthat
the functiona data must be mapped to
theindividua subject’ sanatomy, where
theanatomy isextracted from structural
imagesus ngtechniquesdescribedinthe
previoussection. Oncemappedto anato-
my, thef unctional datacan beintegrated
with other functional data from te
same subject, and with functiona data
from other subjectswhose anatomy has
beenrelatedtoatempl ateor probabilistic
alas Techniquesfor generating, mapping
and integrating functiond data are part
of thefield of Functiona BrainM goping,
which has become very active in the
pastfewyears, withseveral conferences
[119] and journdls[120, 121] devoted to
the subject.

3.1 Image-based functional brain
mapping

Image-based functiond data gene-
rally come from scannersthat generate
reldively low resolution volume arrays
depicting spatidly-locdized activation.
For example, poditron emisson tomo-
graphy (PET) [122, 123] and magnetic
resonance spectroscopy (MRS) [124]
reved the uptake of various metabolic
products by the functioning brain; and
functional magnetic resonance imaging
(fMRI) reveds changes in blood oxy-

genation that occur following neura
activity [123]. Theraw intengty values
generated by these techniques must be
processed by sophigticated dtatitica
dgorithms to sort out how much of the
observed intendty is due to cognitive
activity and how much is due to
background noise.

Asanexample, onegpproachtofMRI
imaging is the boxcar paradigm gpplied
to language mapping [125]. The subject
isplaced inthe MRI scanner and told to
slently nameobjects showna 3 second
intervals on a head-mounted display.
The actual objects ("on" state) are
alternated with nonsense obj ects("off"
date) ,andthefMRI signal ismeasured
during both the on and the off states.
Essentidly the voxel values at the off
(or control) state are subtracted from
those at the on state. The difference
vauesaretestedfor Sgnificant difference
fromnon-activated aress, then expressed
ast-vaues. Thevoxe array of t-values
can be digplayed as an image.

Alargenumber of dternativemethods
have been and are being developed for
acquiring and andyzing functiond daa
[126]. The output of most of these
techniquesis alow-resolution 3-D imege
vaume in which each voxd vadue is a
measureof thearmount of activationfor a
given tesk. The low-resdlution valume is
then mapped to anatomy by linear
regigtrationtoahigh-resolution structurd
M R dataset, usngoneof thelineer registras
tion techniques described in section 2.1.2.

Many of theseand other techniques
areimplemented in the SPM program
[127], the AFNI program [128], the
Lyngby toolkit [129], and severa
commercia programs such as Medex
[51] and BrainVoyager [33]. The
FisWidgetsproject at the University of
Pittsburgh is developing a set of Java
wrappersfor many of these programs
that allow customized creation of
graphical user interfacesinanintegra-
ted desktop environment [130].

3.2 Non-image based functional
mapping
Inadditiontotheimage-based func-
tional methodsthere are anincreasing
number of techniquesthat do not direct-
ly generate images. The data from
thesetechniquesaregenerally mapped
to anatomy, then displayed as func-
tiona overlays on anatomic images.

For example, cortica stimulation
mapping (CSM) is a technique for
localizing functional areas on the
exposed cortex at the time of neuro-
surgery. Inour ownwork thetechnique
is used to locdlize cortica language
areas so that they can be avoided
during the resection of a tumor or
epilepticfocus[131]. Followingremov-
al of aportion of theskull (craniotomy)
the patient is awakened and asked to
namecommonimagesshownondides.
During thistime the surgeon appliesa
small electrical current to each of aset
of numberedtagsplaced onthecortica
surface. If the patient is unable to
name the object while the current is
applied the site is interpreted as
essentia for language and is avoided
a surgery. In this case the functional
mapping problemishow torelatethese
stimulation sites to the patient’s
anatomy as seen on an MRI scan.

Our approach, which we call
visualization-based mapping [21, 32],
is to acquire image volumes of brain
anatomy (MRI), cerebral veins(MRV)
and cerebral arteries(MRA) prior to
surgery, to segment theanatomy, veins
and arteriesfrom theseimages, and to
generate a surface-rendered 3-D
model of the brain and its vesselsthat
matches as closdly as possible the
cortical surface as seen at neuro-
surgery. A visua mapping program
then permitstheuser to drag numbered
tags onto the rendered surface such
that they match those seen on the
intraoperative photograph. The pro-
gram projects the dragged tags onto
thereconstructed surface, andrecords
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the xyz image-space coordinates of
theprojections, thereby completingthe
mapping.

The red goa of functiona neuro-
imaging is to observe the actual
electrical activity of the neurons as
they perform various cognitive tasks.
fMRI, MRS and PET do not directly
record electrical activity. Rather, they
record theresultsof electrical activity,
such as (in the case of fMRI) the
oxygenation of blood supplying the
active neurons. Thus, thereisadelay
fromthetimeof activity tothemeasured
response. In other words these tech-
niques have relatively poor temporal
resolution. Electro-encephal ography
(EEG) or magnetoencephal ography
(MEG), on the other hand, are more
direct measures of electrical activity
since they measure the electro-
magnetic fields generated by the
electrical activity of the neurons.
Current EEG and MEG methods
involvetheuseof largearraysof scap
sensors, the output of which are
processed in a similar way to CT in
order to locdize the source of the
dectrical activity insgde the brain. In
general this "source localization
problem" isunder constrained, soinfor-
mation about brain anatomy obtained
from MRI is used to provide further
constraints [132].

4 Image-based brain
information systems

The god of many of the techniques
described inthe previous sectionsisto
develop methodsfor integrating struc-
tural and functional brain image data
through spatid and symboalic repre-
sentations of anatomy. As described
in section 1 this is one of the mgor
goals of the HBP. Another goal
described in that section isto develop
Internet-based methods for sharing
and disseminating the integrated
information.

Oneway information can beshared
is through remote visuaization and
manipulation of raw and processed
images. For example, inour ownwork
we have created aweb-based visuali-
zation applet that permits 3-D viewing
of theresultsof our visualization-based
approach to brain mapping [133].
Similar remoteimageviewersarebeing
developed by other members of the
HBP [134-137).

Two groups permit Internet control
of expensivemicroscopy systems. The
Iscope project a the University of
Tennessee permits control of a light
microscope for viewing dides of a
mouse brain atlas [83], whereas the
Nationa Center for Microscopy and
Imaging Researchisimplementingweb
control of anelectronmicroscope[138].

A more comprehensive way for
sharing information is to develop
backend database systems that allow
Web-based queries of the processed
and integrated data. Asthese systems
aredevel opedthehopeisthat linkscan
beestablished betweenindividua brain
information systems so as to promote
knowledgediscovery and thedevel op-
ment of distributed, large-scallemodels
of brainfunctionthat will help establish
a"wholeness' in neuroscience.

Thisresearchareaisdsoactiveinthe
HBP, but not asmuch progresshasbeen
made as in the other areas of tool
deve opment andmethodsfor integrating
data. Thereseemtobefour mainreasons
forthis 1) thedevel opment of information
systems depends on progress in tool
development and on methods for
integrating datainacommon anatomica
framework, 2) not enough informatics
and database experts have become
involved in the HBP, 3) not enough
content hasyet been made availablefor
database expertsto "play" with, and 4)
thedeve opment of information systems
ralsesadditiond nonrivid i ssuesrelated
to security and intellectual property.

Asshownintheprevioussectionsa
large amount of effort is going into
solving the first problem (tools and
integration). Webelievethat thesecond
problem (not enough informatics
experts) arisespartly becauseinforma-
ticsand computer scienceinvestigators
are not sufficiently aware of the rich
set of problems posed by the HBP.
Hopefully, thisreview articlewill help
in this area. The third problem (not
enough content) is aso dowly being
addressed by ongoing efforts. More
content will help attract moredatabase
and informatics experts. The fourth
problem (security and intellectual
property), which is very familiar to
clinical informaticsworkers, isstarting
to be addressed by those who are
developing braininformation systems.
That thisproblemisnotat al trivid has
been noted in severa recent articles
about the HBP [139, 140].

The information systems that are
currently in active development in the
HBP can more or lessbe classified as
experiment management systems for
locd data, systems for handling pub-
lished results, and raw data reposito-
ries analogous to GenBank for gene
sequences[141]. Thislast isthe most
controversia. A listing of many of the
current neuroscience database sy-
stems is available [142].

4.1 Experiment Management
Systems

In our work we use the term,
"Experiment Management System"
(EMS) torefertoaninformationsystem
that keeps track of the results and
protocols for specific experiments of
interesttoanindividual or lab[143]. At
the least such a system should permit
organization of and access to data of
interest to the locd individud or group.
An EMS usudly evolves from a
collection of computer files or paper
records that has become too unwieldy
for even loca management. An EMS
can therefore be appealing to neuro-
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scientists because it solves an
immediate problem of interest tothem.
If the data are made available on the
web, andif appropriate safeguardsare
implemented to prevent unauthorized
accessto thedata, an EM S can permit
data sharing among distributed colla-
borators. Inaddition, if at east someof
thedataintegration methodsdescribed
in the previous sections are imple-
mented, the local EMS will be more
amenable to wider sharing in a
federated database.

Our HBP work follows this
gpproach: we are developing image
process ngtoolsandan EM Sof interest
to aspecific set of neuroscienceusers,
while developing or incorporating
integration methodsthat will |ater permit
more widespread data sharing. We
believethat this"bottom-up" approach
isaviablecomplement tothetop-down
approachesof other HBPeffortsif the
tools and methods can be "cloned” for
useby other groups, andif "hooks' can
be provided for later integration of
these and other efforts in federated
information systems.

The main idea of an EMS is that
metadata (data about data) provide
indicesinto individud daafiles such as
images or segmented anatomy, which
aretheinput or output of variousimage-
processing tools. A smple spreadsheet
is often the first place where these
metadata are stored. As the need for
better search becomes evident the
Soreadsheet may beimportedintoalocal
databasesuch asMicrosoft Access, and
astheneedfor remotesharingand more
robust data management becomes
clear the data may be imported to a
higher-end database system that is
interfaced to the web. Many commer-
cid database systems provide web-
accessible views of the database.

Inour ownwork wehavedevel oped
an open source Experiment Manage-
ment System Building Environment

(EMSBE), and have used the toolkit
to implement an EMS for our HBP
work [143, 144]. The toolkit, which
is called WIRM (Web Interfacing
Repository Manager) isaset of perl
APIs that can beinterfaced to any
back-end relational database, and
that can be called by aperl program-
mer to dynamically generate web
views of metadata and associated
datafiles [145]. Any of the extensive
set of perl modulesinthe comprehen-
sive perl archive network (CPAN,
www.cpan. org) can be used in
conjunction with WIRM to provide
extensive backend processing of
data, including image conversion,
import of spreadsheet data, and XML
parsing. When coupled with Java
applets for viewing 3-D or time
varying data located on the server,
the resulting systems can provide
remote access, visualization, and
mani pul ation of most dataof interest
to neuroscientists. A similar open
source toolkit called Zope
(www.zope.org) [146], which is
written in Python as opposed to perl,
isthe basisfor aproject to develop an
open source medical record system
(www.freepm.org).

We have used WIRM to create a
web-accessible experiment manage-
ment systemfor organizing, visuaizing
and sharing language map data, much
of whichisintheform of 2-D and 3-D
images [143, 147]. The system is
currently in use in three widely
scattered labs at the University of
Washington.

A similar EMS cdled SUMS
(Surface Management System) is
being developed at Washington
University tohandleimages processed
by the Surefit and Caret programs
[31], and a system being developed
by Wong et al. at UCSF handles
images and other data associated
with neurosurgical treatment of

epilepsy [148].

Another example of what wecall an
EMS (our terminology) isthe Bran
Image Database (BRAID) [137, 149,
150] being developed a Johns Hopkins
for management and evauation of
"Image-basad clinicd trids’ [150]. The
system, like some others in the HBP
[151, 152], isimplemented inthe lllustra
(now Informix now IBM) object-
relationd databasesystem, whichpermits
the development of specialized
"datablades’ for image processing and
andyss. BRAID isbeing developedto
facilitete leson-deficit studies in large
dinicd trids. PatientMRimagevolumes
are warped to one of several labeled
human atlases[102], thereby permitting
automatic identification of anatomical
structures (subject to the limitations
discussed in section 2.5). Lesions from
patient MR images are manually
delineated and stored in the database,
dongwiththewarpedandlabeedimages
Analytical tools embedded in the
database, andaccessedthroughextended
SQL, permit rapid computation of
sructure-function correlations, as for
example, a corrdation between lesons
in the optic radiaions and contra latera
visud field defect [149], or acorrdation
between traumatic injuries to the right
putamen and an increase in atention
deficit disordersin children [153].

Other groups in the HBP are dso
developing what we cdl EMS's, but
these generdly do notinvolveimagesto
muchextent [73, 154, 155]. Of particular
relevance for eventua data sharing is
the dectrophysologicd EMS under
development by Gardner et d. [73]. As
part of that effort Gardner hasproposed
BDML (Biophysical Description
Markup Language), an XML-based
common format for data exchange.
Although initidly in use for sharing of
electrophysiologicd data, BDML was
designed from the start to encompass
otherkindsof braindata, indudingimeges
A few other HBP groups have begun
expeimentingwithBDML toseeifitis
relevant to their own data.
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Thereareaso someinitial effortsto
develop federated database systems
that can tie together individud EMS's
[156], dthough there appear to befew if
any publishedeffortstoexpl oreadvanced
database issues such as intelligent
retrieval or content-based retrieval.
We believe that these kinds of efforts
represent the next stage of the HBP.
They will become more widespread as
individud EMSs are developed, asthe
thorny problemsof dataintegrationand
intellectua property becomeironed out,
and as maingream database experts
become interested in the HBP.

4.2 Published results

At the other end of the spectrum
from individua EMSs are efforts to
essentially index published literaturein
more meaningful ways than smple
term searches in Medline. Like indi-
viduad EMSs, which ded only with
data that the individual researcher
wantsto sharewith hisor her collabo-
rators, this kind of effort is not
controversa becauseitsmply provides
enhanced access to public data. The
enhancements generally make use of
some of the integration methods
described in section 2.5 to provide
anatomically based queriesbasedona
template atlas, often coupled with a
controlled vocabulary.

An early example of such an atlas-
based system wasthe Brain Browser,
a Mac HyperCard application that
permitted scientists to map experi-
mental results onto a rat brain atlas
template [65]. A morerecent effort is
theMouseBrainLibrary at Tennessee,
which contai nsatlassectionsand meta-
datafrominbred mousestrains, for use
in mapping genetic data [83].

An early, and still one of the few
Web-accessible atlas systems that
includesmapped dataaswell asimages,
is the BrainMap database developed
by Fox et al. at theUniversity of Texas
[157]. Inthissystem dataareintegrated

primarily accordingto Taarachcoordi-
nates, which arein turn linked to ana-
tomical names. Webformsareusedto
enter a query as a Boolean combina-
tion of constraints such as Taairach
coordinates, anatomical names, publica:
tion source, laboratory of origin, and
imaging protocol. The system returns
references to published literature that
meet thesearch constraints. Registered
users can retrieve experimental data
associated with thedata, and an author
mode permits authors to input their
published results into the system.

TheFox databaseuseslinear Tdarach
coordinatestointegratedata. Incontrast,
the Bowden brain information system
usestheBooksteinlandmeark-based non-
linear regidtration method [ 100] towarp
2-D imagesfromtheliteraturetoabran
atlas template, which has been labeled
by terms from NeuroNames [62]. The
template atlas takes the place of the
earth in a commercia Geographic
InformationSystem(GIS) [158]. When
completethe system will permit aweb
user to type aNeuroName or click on
anareaof thetemplate atlasto specify
a given dructure, to add additiona
constraints such as neurotransmitter
type, andtoretrieveall mapsthat have
been warped to the template. These
maps in turn will contain links to the
origina articles.

4.3 Datarepositories

The most controversial HBPefforts
are amed at the establishment of raw
datarepositoriesthat are widdly acces-
gble, in andogy to highly successful
bioinformaticsefforts such asGenBank
[141] or the protein data bank (PDB)
[159]. One reasonfor thecontroversy is
that brain data are seen by most
neuroscientists as being much more
complexthanthere atively smplelinear
sequencesor 3-D coordinatefilesrepre-
sented in GenBank or PDB, and in fact
itisnot even clear how the data should
be represented and which data should
be shared. As evidenced by section

2.5 it is not clear how to relate data
from multiple subjects, let aone a
different levels of anatomica granu-
larity. Inaddition many neuroscientists
express concern that public data will
not have adequate quality control, and
that data will not be adequately
protected from unauthorized use.

Perhapsbecauseof theseissuesthere
areonly afew attemptsto establish raw
data repositories. One example of such
an atempt isthe Dartmouth fMRI Data
Center [152], whichisbeing devel oped
as a repository for organizing fMRI
image datasets submitted by multiple
authors. When the project was first
discussed it was proposed that authors
of articlestocertainjournal sberequired
to submit their fMRI images to the
repository asaconditionof publication,
again in andogy with the requirement
for authors of papers about gene
sequences to submit their sequencesto
GenBank. This proposa generated a
fierce reaction from other HBP and
neuroscience researchers [140], with
theresultthat mostjournd sretractedthe
requirement. Nevertheless, there are
meany researchers, including thedirector
of the HBP [139], who fed strongly
that neuroscience must begin to share
raw data if the field is to advance. It
may be that more advanced database
methods, such as federated databases
[156] or peer-to-peer databases ada
Napster [160], will berequiredinorder
to achieve thisgod.

5 Achieving the promise of
the Human Brain Project

In this review we have tried to
summarize many of the projectsin the
Human Brain Project, emphasizingthe
ubiquity of images in most of them.
The resulting imaging informatics
problemsof imagegeneration, manage-
ment, processing and visudization are
not uniqueto the brain, yet because of
thevariety and sheer numbersof brain
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images, the problems are at least as
varied and chalenging as any that
arise from other areas of the body.
Therefore, solutionsto these problems
should have widespread applicability
outside the brain or even biomedicine.

Similarly, we hopewe have demon-
strated the central role that neuro-
anatomy plays as an organizationa
framework, not only for brain imeges,
but also for most other neuroscience
dataaswell. Aswenoted earlier, acase
for this centrd role of anatomy can be
made throughout al of biomedicine,
which has prompted to us to define
structura informaticsasa sub field of
biomedical informatics for dealing
specificaly with information about the
physical organization of the body.

As noted in section 1 the brain
presents very challenging research
problems in structura informatics, in
the areas of spatiad and symbolic
representation, brain sesgmentation, and
especially anatomic variation, yet
considerable progress has been made
inthese areasby HBP and other brain
researchers. Since a central tenet of
structural informatics is that patterns
of physica organization repeat them-
selves throughout the hierarchy from
macroscopic anatomy to molecules, it
is highly likely that these results will
finduseinother areasof thebody. One
of themain reasonsto define afiedis
topromotethiskindof cross-fertilization
of techniques.

This potentia for cross-fertilization
isoneof themanmotivatorsfor defining
thefield of neuroinformatics, whichis
the field that has the most interest in
achieving the goals of the HBP. The
goals of the HBP to "database the
bran" [2] are so ambitious as to
practicaly dwarf the goals of the
Human Genome Project. Many have
argued (and they may beright) that the
godsaretoo ambitiousto be practical,
and that resources would be better

spent on specific neuroscience-driven
projects that involve the use of
computers. But the criticsmay also be
wrong. Whether weget to themoon or
not may belessimportant thantheside
effects that can result from such an
endeavor. Just asmedical informatics
has evolved to promote cross-fertili-
zationamong informaticistsand health
scientists, sotoo could neuroinformatics
promote cross-fertilization among
informaticists and neuroscientists.
Nationa initiatives such as the HBP
canfoster thesekindsof collaborations
by funding interdisciplinary projects
that bring together experts in areas
suchasimaging informatics, structural
informatics, neuroscience, radiology,
computer science, and information
science.

For thesekindsof effortsto succeed
each kind of expert needs to become
educated in the research problems of
the other field, in enough detail so that
they see how the problems apply to
their own field. This paper is as much
as anything an attempt to educate the
wider biomedica and hedthinformetics
community, andthecomputer scientists
and other technology experts that are
associated with thiscommunity, injust
afew of theinformaticsand computer
sciencechallengesassociated withthis,
the problem of understanding the most
complex entity known. The paper will
have succeeded if itinspiresjust afew
of them to become involved in this
grand chalenge for the 21% century.
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