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Inthissection, articleswhichreflect
current post-genomic trends in
bioinformaticsare collected. Herewe
overview the various post-genomic
challengesand, inrelationtothem, we
briefly introduce the contents of the
collected articles.

1. Bioinformatic studies
in the post-genomic era

Sincethehuman genomeprojectis
almostfinished[1,2], maininterestsin
the life science community are now
moving to post-genomic challenges,
such asfunctional genomics, compar-
ative genomics, proteomics, metabol -
omics, pathway analysis, systemshbiol -
ogy. Inbioinformaticsanaysis, athough
sequence analyses have been and are
still the most common tasks in the
routineanal yses, new topicsinbioinfo-
maticsstudieshaveappearedtotackle
post-genomic challenges. We briefly
overview several study fieldsbelow.

(1) Whole genome informatics
Now that whole genome sequences
of more than 100 species are finished
to read, though most are prokaryotes,
thestudy of thewholegenomestructure
becomes possible. Comparative
genomics[ 3] isanew branch of genome
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sciences which compares whole
genome sequences between different
speciesto find genome-wide common
structure and itsevolutionary change.
One of the classical examples in
comparative genomics is to infer the
minimum gene set of life from the
comparisonamongthegenomesof the
primitive microbial organisms|[4, 5].
Other typical studiesarerelatedtothe
evolutionary trace of large-scaled
change of genome structures, such as
chromosomeduplicationinthecourse
of evolution concerning the gene
cluster [6].

Inthewholeof genomeinformatics,
effective usage of genome databases
isaprerequisite. Therearemany well-
known databases for whole genome
such as GDB (Genome DataBase),
LocusLink/RegSeq, FlyBase and
WormBase. To ensure usability and
accessi bility of thedatabase, it becomes
important to eliminate the factors
militating againstthefull exploitationof
thegenomicinformation.

In the paper by Coppel, a Malaria
genomedatabase (PlasmodiumDB)is
taken and discussed with regards to
several problems related to ensuring
thefull exploitation of whole genome
sequences. Thepaper presentsseveral
lessonslearned whichwould beof use
to other organism-specific databases.

(2) Transcriptome analysis and
microarray data processing

Transcriptome, comprehensive
information of gene expression
(mRNA) at the whole cell level, can
now be observed by DNA chip and
cDNA microarray. Whereas the
genome is a possible repertory of
biological functionintermsof geneset
and the proteome is the currently
expressed whole set of functional
protein, the transcriptomereflectsthe
current production rate of functional
proteinineachcell, sothat it shows, so
tospesk, intentionsof living cellsunder
theimposed cell conditions, whichare
not found in the information of the
genome and the proteome.

A gresat deal of new bioinformatics
studiesrelatedtomicroarray datahave
emerged over the years. There are
mainly two sub fields in microarray
information processing. Oneispheno-
menological processingof geneexpres-
sion data in micro-arrays such as the
classification of theexpressionprofile
through clustering methods to make
groupsboth for genesand subjects, or
toidentify thedifferentially expressed
genes under the two comparative
conditions of micro-arrays[7, 8].

The other is to identify structural
relations among expressions of each
gene. Along this line of the study, a
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typical study is to identify genetic
(regulation) networksfromtheexpres-
sion profiles of micro-arrays [9,10].
Many model sareusedfor representing
the genetic network; for example the
Bool eangeneticnetwork model where,
though its connected path, a gene
facilitates or suppresses the other's
expression is a simple deterministic
model of the genetic network. On the
other hand, thereareal so probabilistic
model swheretheinteractionsbetween
connected genes are random.

Inthe paper by Reiset al., temporal
slopes of the expression level of each
gene are determined based on the
sequential observations of mMRNA
expression pattern of Saccharomyces
cerevisiaeand correlation coefficients
arecal culated betweenthesetemporal
dopesof all genes. By random permuta-
tion of expressiondata, they estimated
thevariation of the correlation coeffi-
cients when there is no significant
correl ation between genes, and deter-
mined the thresholds over which we
judgetheexistenceof significant corr-
elation. By connecting pairs of genes
having over-threshold correlation, soto
speak dynamicaly correlated pattern
(“relevancenetwork”) amongthegenes
can be obtained. They show high
association in this dynamic correlation
well agreeswithfunctiona andregulatory
rel ationshi ps between genes.

(3) Other areas

Thebioinformaticsfield related to
proteins, called “ Protein Informatics”
hasal sodrastically progressedrecently.
This field includes (1) structural
genomicswhere structural prediction
of protein or classification of repre-
sentative structure of basic protein
folds is amain topic, (2) proteomics
whichisrelated to the comprehensive
observation and characterization of
functional proteinsinthe cell and (3)
functional genomics which predicts
protein function from the sequences
and structures such as to estimate
binding sitesor reaction sites.

2. Pathwayanalysisand
systems biology

Other important new areas of
bioi nformati csresearcharethosewhich
am to understand life as a whole
functional organization from
comprehensive bio-information. This
area ranges from the more confined
topic called “pathway anaysis’, to
moregenerally proposed di sciplinesof
“systemsbiology”.

(1) Pathway analysis

In the pathway analysis, metabolic
pathway or protein-protein networks
such as signal transduction cascade
areof maininterests. Wehaveaready
several well known pathway DBs, for
example, KEGG (Kyotoencyclopedia
of Genes and Genomes), an online
databasefor metabolic and regulatory
pathways, ExPA sy molecular biology
server, a scanned map of Boehringer-
Mannheim ‘Biochemica Pathways',
EcoCyc, a comprehensive database
for metabolicandregulatory pathways
of E. Coli. TRANSPATHandCNSDB
(Cell signaling Network Database) are
databases especially for signal
transduction cascades.

In these pathway DBs, pathways
arevisualizedingraphformat but mostly
inastatic way. It would be preferable
that graph representation of the
pathways can be automatically and
dynamically updated when new
components are incorporated. In the
paper by M. Becker, anew agorithm
is presented to draw the metabolic
pathway by combination of circular,
hierarchic and force-directed graph
layout. Thisautomatic drawing of the
metabolic network is of great use to
promotethefeasibility of pathway DBs.

(2) Systems biology

1) Concept

Although Kitano coins the word
“systems hiology”, it is now widely
accepted as a generic term. Thefield
and purposeof systemsbiology [11] is

not newinbioinfomatics. Sofar, similar
disciplineshavebeencalled“integrative
biology” or “biological system
analysis’. One of the typical and
established research areas for this
sort of analysishasbeenintheareaof
“metaboliccontrol analysis‘ [12] where
traditional control system theory is
applied to the metabolic pathway to
investigate the system performance
or sengitivity of rate-limiting pathinthe
metabolic system.

Prior to the post-genomic era, there
had been no largely organized
comprehensive biological data (“—
omic” data) to beutilized inthemodel
analysis. Thesestudiesweretherefore
forced to be theoretical using only
simple mathematical models and few
experimental data. Now, many kinds
of comprehensive biological dataare
available and the studies dealing with
the integrative behavior of life are
gradually changingwithregardtostudy
style. They use large-scaled data
obtained by genome-wide measure-
ment such as whole gene expression
profileby cDNA micro-array, and the
modeling becomes more comprehen-
siveandrealisticindealingwithwhole
cells, though modeled organisms are
primitivemicrobes. Thefollowingtopics
are now being studied currently in
systemsbhiology:

(1) Comprehensivesimulationof large-
scale pathways of metabolism,
includingawholecell metabolism

(2) System analysis of the metabolic
pathway or genetic regulatory
network

(3) System identification of the meta-
bolic pathway or geneticregulatory
network from comprehensive
experimental data such as the
cDNA expression profile.

(4) System design of the artificial
organismor artificial bacteriahaving
preferable characteristics.

(5) Pathway databases and signal
transaction cascade databases
(6) Tools and software to support the

system biology such as the cdl
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simulation package and standard
documentation language for cell
moddling.

2) Projects
In the last several years, systems

biology hasbecome one of the nation-
wideprojectsinthepost-genomic era.
In the United States, NIH/NIGMS
supportsthe Alliance for the Cellular
Signaling (AFCS) project whichaims
at examining the signal transduction
inside cells, by analyzing mouse' s G-
proteincoupledsignalingsystemwhere
1000proteinswork cooperatively. They
alsosupportacellular communication
andcell migrationconsortiumandmany
other groups conducting the
guantitative analysis of complex
biological systems.

The Department of Energy (DOE)
isalsoconductinga“ GenometoLife”
project mainly aiming to model the
microbial “virtual cell”, especially its
metabolic system organization andits
migration. Thebiomedical engineering
projects in NIH called physiome
projects also have astrong relation to
systemsbiology. InEU, Model of Life
(MOL) projects are now being
conducted.

In Japan, E-Cell, a simulator for
virtual cellswithminimal geneset (127
genes) wasdevel oped by Tomitawhich
is used as a base model for a human
red blood cell [13].

3) Related areas — Biological
modeling, complex systems, dynamical
network theory

Fromadightly different perspective,
another stream also attracts interests
inthesystemsbiology community. This
stream is nonlinear modeling or the
complex systems approach to
biological systems. Sofar inthefield
of theoretical biology, complex systems
approaches were adopted because
biological systems are always
nonlinear. In the complex systems
approach, the whole system is
considered more than the sum of its

parts and emerging properties of
biological systemsarewell recognized
intheoriginsof life, biologica evol ution,
and development process. So far, as
often seen in the Kauffman theory
[13], for modeling those essential
phenomena of life, Erdos random
network theory has been ordinarily
used for the base model of biological
relations. For example, randomreaction
networks of autocatalytic sets of
biopolymersareusedfor modelingthe
origin of life, random epigenetic
interaction networksamongthegenes
areusedfor calculatingtheintegrative
fitnesslandscape of multiple genesof
evolution, and random Boolean
networks are utilized to describe the
regulation of cell typesin biological
development.

But recently random networks
haven't been seen as the appropriate
model for real networks, instead“ scale
free” networks [15] in which the
frequency distribution of number of
edge connecting to the nodes has a
long tail obeying power-law (straight
lineinlog-logplot) or otherwise“ small
world” networks[16] are used. It was
shownthat themetabolic pathway [ 17]
and protein-proteininteraction network
of Yeast Two Hybrid [18] isa scale-
free network. Hence, with
comprehensivebiological information
and anew dynamical network theory,
systemlevel organizationof biological
networkswill drastically beclarifiedin
theory.

In the paper by Yates, by taking
the immunological system as an
example, techniquesand theissuesin
building“good” biological modelingare
discussed, where nonlinear threshold
effects and bifurcation or emerging
phenomenainimmunological response
are investigated by a phase plain
method about the immunological
cytokine (TNF) network and T hel per
T cell differentiation. Monte Carlo
simulation isdescribed for stochastic
simulation for cross talk for T cell
receptors.

3. Clinical bioinformatics

(1) Polymor phism of the human
genome

Comprehensive approaches for
biological information also begin to
exert important influences on clinical
medicine. Various polymorphisms of
the human genome sequence char-
acterizetheindividual specificity of the
patient genome, such as restriction
enzyme polymorphism, VNTR
(variable number of tandem repeat),
SINE, LINE and SNP (single nucle-
otidepolymorphism). Especidly SNPs
arerecently themaintarget of compre-
hensive surveys in relation to drug
discoveries. SNPs are found on aver-
age every one thousandth nucleotide,
sothat threemillion SNPsaresupposed
to characterize the haplotype of the
patient genome, whichwouldberel ated
tothediseaseand drugresponse. Hence
itwouldbeof maininterestfor clinical
application of genome to realize
“Personalizedmedicine”.

(2) System theoretic approach to
diseases — disease modeling

Disease might be due to the defect
of asingle gene (mono-genic disease)
or caused by defects of morethan one
gene(polygenicdisease). Sincemono-
genic diseases seem to be mostly
explored, polygenic diseases, which
cover most “common diseases’ such
ashypertention, diabetesandischemic
heart diseases, arenow attracting more
attention. In the polygenic common
diseases, diseasesarethought toform
themselvesinthecombined manner of
the various gene defects and the
environment. For example, morethan
20 genesarerelated to the occurrence
of diabetes. Solikesystemsbiology for
normal biosystems, asystems-pathol-
ogical approach or systematic disease
modeling would be of great value to
comprehensive understanding of
polygenicdiseases.

Oneof thepromising approachesin
disease modeling is the “Virtual
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Patient”. Entelos Inc. has developed
thevirtual patient systemthatisusedto
model obesity, diabetes and asthma.
The virtual patient model involves
various levels of knowledge, such as
relatedtothegenetic, pathophysiologic
and life-style factors and both top-
downandbottom-upapproachbetween
geneticleve tosymptomatol ogiclevel
areemployed. Theday will comesoon
when we use these virtual patient
modelsfor clinical decisionmaking.

In the paper by Sreekumar et.al,
they show themany exampleswherein
by using comparative genomics and
computational sequence analysis,
especialy for domain analysis of
functional protein, many human
disease-related genescanbeidentified
and the etiology is accessed. It could
beconsidered asapreliminary trial of
“systems pathology” or “disease
moddling”.

4. Conclusions

In the bioinformatics field, new
research topicsto solve post-genomic
challenges are emerging. In this
synopsis, whole genome informatics
(comparative and functional genom-

ics), pathway analysis, systemsbiol ogy
and clinical bioinformatics were
especially discussed. Collected papers
have strong relation to these topics.
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