Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2018 Update and Clinical Implications

Adam J. Brownstein, BA¹ Valentyna Kostiuk, BA¹ Bulat A. Ziganshin, MD, PhD¹,² Mohammad A. Zafar, MD¹ Helena Kuivaniemi, MD, PhD³ Simon C. Body, MD, MPH⁴ Allen E. Bale, MD⁵ John A. Elefteriades, MD¹

¹ Department of Surgery, Section of Cardiac Surgery, Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
² Department of Surgical Diseases # 2, Kazan State Medical University, Kazan, Russia
³ Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, and Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
⁴ Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
⁵ Department of Genetics, Yale School of Medicine, New Haven, Connecticut

Address for correspondence John A. Elefteriades, MD, Aortic Institute at Yale-New Haven, Yale University School of Medicine, 789 Howard Avenue, Clinic Building – CB317 New Haven, CT 06519 (e-mail: john.elefteriades@yale.edu).

This review is the update to the 2017 paper “Genes Associated with Thoracic Aortic Aneurysm and Dissection” published in AORTA.¹ We have updated both » Table 1 listing the genes known to predispose to thoracic aortic aneurysm or dissection (TAAD) and » Fig. 1, with the recommended sizes for surgical intervention for each specific mutation, based upon published findings in 2017.

Thoracic aortic aneurysms, with an estimated prevalence in the general population of 1%, are potentially lethal, via rupture or dissection. Over the prior two decades, there has been an exponential increase in our understanding of the genetics of thoracic aortic aneurysm and/or dissection (TAAD). To date, 30 genes have been shown to be associated with the development of TAAD and ~30% of individuals with nonsyndromic familial TAAD have a pathogenic mutation in one of these genes. This review represents the authors’ yearly update summarizing the genes associated with TAAD, including implications for the surgical treatment of TAAD. Molecular genetics will continue to revolutionize the approach to patients afflicted with this devastating disease, permitting the application of genetically personalized aortic care.

Keywords

► genetics
► thoracic aortic aneurysm
► thoracic aortic dissection

Abstract

Thoracic aortic aneurysms, with an estimated prevalence in the general population of 1%, are potentially lethal, via rupture or dissection. Over the prior two decades, there has been an exponential increase in our understanding of the genetics of thoracic aortic aneurysm and/or dissection (TAAD). To date, 30 genes have been shown to be associated with the development of TAAD and ~30% of individuals with nonsyndromic familial TAAD have a pathogenic mutation in one of these genes. This review represents the authors’ yearly update summarizing the genes associated with TAAD, including implications for the surgical treatment of TAAD. Molecular genetics will continue to revolutionize the approach to patients afflicted with this devastating disease, permitting the application of genetically personalized aortic care.

ISSN 2325-4637.

Copyright © 2018 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.
Tel: +1(212) 584-4662.

License terms
<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>Animal model leading to vascular phenotype?</th>
<th>Syndromic TAAD</th>
<th>Nonsyndromic FTAAD</th>
<th>Associated disease/syndrome</th>
<th>Associated clinical characteristics of the vasculature</th>
<th>Ascending Aorta Size (cm) for Surgical Intervention</th>
<th>Mode of inheritance</th>
<th>OMIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTA2</td>
<td>Smooth muscle α-actin</td>
<td>Yes (^{10})</td>
<td>+</td>
<td>+</td>
<td>AAT6 + multisystemic smooth muscle dysfunction + MYMY5</td>
<td>TAAD, early aortic dissection; CAD, stroke (moyamoya disease), PDA, pulmonary artery dilation, BAV(^{11,12})</td>
<td>4.5–5.0(^{13–15})</td>
<td>AD</td>
<td>611788, 613834, 614042</td>
</tr>
<tr>
<td>BGN</td>
<td>Biglycan</td>
<td>Yes (^{16})</td>
<td>+</td>
<td>–</td>
<td>Meester-Loeys syndrome</td>
<td>ARD, TAAD, pulmonary artery aneurysm, IA, arterial tortuosity(^{17})</td>
<td>Standard X-linked</td>
<td>X-linked</td>
<td>300989</td>
</tr>
<tr>
<td>COL1A2</td>
<td>Collagen 1 α2 chain</td>
<td>No</td>
<td>+</td>
<td>–</td>
<td>EDS, arthrochalasia type (VIIb) + cardiac valvular type</td>
<td>Borderline aortic root enlargement(^{12,18})</td>
<td>Standard</td>
<td>AD + AR</td>
<td>130060, 225320</td>
</tr>
<tr>
<td>COL3A1</td>
<td>Collagen 3 α1 chain</td>
<td>Yes (^{19})</td>
<td>+</td>
<td>–</td>
<td>EDS, vascular type (IV)</td>
<td>TAAD, early aortic dissection; visceral arterial dissection, vessel fragility, IA(^{20})</td>
<td>5.0(^{21–22})</td>
<td>AD</td>
<td>130050</td>
</tr>
<tr>
<td>COL5A1</td>
<td>Collagen 5 α1 chain</td>
<td>No(^{6})</td>
<td>+</td>
<td>–</td>
<td>EDS, classic type 1</td>
<td>ARD, rupture/dissection of medium sized arteries(^{23–25})</td>
<td>Standard</td>
<td>AD</td>
<td>130000</td>
</tr>
<tr>
<td>COL5A2</td>
<td>Collagen 5 α2 chain</td>
<td>Partially(^{7})</td>
<td>+</td>
<td>–</td>
<td>EDS, classic type 2</td>
<td>ARD</td>
<td>Standard</td>
<td>AD</td>
<td>130000</td>
</tr>
<tr>
<td>EFEMP2</td>
<td>Fibulin-4</td>
<td>Yes (^{26,27})</td>
<td>+</td>
<td>–</td>
<td>Cutis laxa, AR type Ib</td>
<td>Ascending aortic aneurysms, other arterial aneurysms, arterial tortuosity and stenosis</td>
<td>Standard</td>
<td>AR</td>
<td>614437</td>
</tr>
<tr>
<td>ELN</td>
<td>Elastin</td>
<td>No</td>
<td>+</td>
<td>–</td>
<td>Cutis laxa, AD</td>
<td>ARD, ascending aortic aneurysm and dissection, BAV, IA possibly associated with SVAS(^{28–30})</td>
<td>Standard</td>
<td>AD</td>
<td>123700, 185500</td>
</tr>
<tr>
<td>EMILIN1</td>
<td>Elastin microfibril interfacer 1</td>
<td>No</td>
<td>+</td>
<td>–</td>
<td>Unidentified CTD</td>
<td>Ascending and descending aortic aneurysm(^{31})</td>
<td>Standard</td>
<td>AD</td>
<td>Unassigned</td>
</tr>
<tr>
<td>FBN1</td>
<td>Fibrillin-1</td>
<td>Yes (^{32–36})</td>
<td>+</td>
<td>+</td>
<td>Marfan syndrome</td>
<td>ARD, TAAD, AAA, other arterial aneurysms, pulmonary artery dilatation, arterial tortuosity(^{37})</td>
<td>5.0(^{35,38})</td>
<td>AD</td>
<td>154700</td>
</tr>
<tr>
<td>FBN2</td>
<td>Fibrillin-2</td>
<td>No</td>
<td>+</td>
<td>–</td>
<td>Contractual arachnodactyly</td>
<td>Rare ARD and aortic dissection,(^{39}) BAV, PDA</td>
<td>Standard</td>
<td>AD</td>
<td>121050</td>
</tr>
<tr>
<td>FLNA</td>
<td>Filamin A</td>
<td>Yes (^{40,41})</td>
<td>+</td>
<td>–</td>
<td>Periventricular nodular heterotopia</td>
<td>Aortic dilatation/aneurysms,(^{42}) peripheral arterial dilatation,(^{43}) PDA, IA, BAV</td>
<td>Standard</td>
<td>XLD</td>
<td>300049</td>
</tr>
<tr>
<td>FOXE3</td>
<td>Forkhead box 3</td>
<td>Yes (^{44})</td>
<td>–</td>
<td>+</td>
<td>AAT11</td>
<td>TAAD (primarily Type A dissection)(^{44})</td>
<td>Standard</td>
<td>AD</td>
<td>617349</td>
</tr>
<tr>
<td>LOX</td>
<td>Lysyl oxidase</td>
<td>Yes (^{45–48})</td>
<td>–</td>
<td>+</td>
<td>AAT10</td>
<td>TAAD, AAA, hepatic artery aneurysm, BAV, CAD</td>
<td>Standard</td>
<td>AD</td>
<td>617168</td>
</tr>
<tr>
<td>MAT2A</td>
<td>Methionine adenosyltransferase II α</td>
<td>No(^{49})</td>
<td>–</td>
<td>+</td>
<td>FTAA</td>
<td>Thoracic aortic aneurysms, BAV(^{49})</td>
<td>Standard</td>
<td>AD</td>
<td>Unassigned</td>
</tr>
<tr>
<td>MFAP5</td>
<td>Microfibril-associated glycoprotein 2</td>
<td>Partially(^{45})</td>
<td>–</td>
<td>+</td>
<td>AAT9</td>
<td>ARD, TAAD</td>
<td>Standard</td>
<td>AD</td>
<td>616166</td>
</tr>
<tr>
<td>Gene</td>
<td>Protein</td>
<td>Animal model leading to vascular phenotype?</td>
<td>Syndromic TAAD</td>
<td>Nonsyndromic FTAAD</td>
<td>Associated disease/syndrome</td>
<td>Associated clinical characteristics of the vasculature</td>
<td>Ascending Aorta Size (cm) for Surgical Intervention</td>
<td>Mode of inheritance</td>
<td>OMIM</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td>---</td>
<td>----------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>MYH11</td>
<td>Smooth muscle myosin heavy chain</td>
<td>Partially,51</td>
<td>–</td>
<td>+</td>
<td>AAT4</td>
<td>TAAD, early aortic dissection, PDA, CAD, peripheral vascular occlusive disease, carotid IA</td>
<td>4.5–5.05,52</td>
<td>AD</td>
<td>132900</td>
</tr>
<tr>
<td>MYLK</td>
<td>Myosin light chain kinase</td>
<td>No,53</td>
<td>–</td>
<td>+</td>
<td>AAT7</td>
<td>TAAD, early aortic dissection, PDA, CAD, peripheral vascular occlusive disease, carotid IA</td>
<td>4.5–5.04,5,53</td>
<td>AD</td>
<td>613780</td>
</tr>
<tr>
<td>NOTCH1</td>
<td>NOTCH1</td>
<td>Partially,8</td>
<td>–</td>
<td>+</td>
<td>AOVD1</td>
<td>BAV/TAAAD54,55</td>
<td>Standard</td>
<td>AD</td>
<td>109730</td>
</tr>
<tr>
<td>PRKG1</td>
<td>Type 1 cGMP-dependent protein kinase</td>
<td>No</td>
<td>–</td>
<td>+</td>
<td>AAT8</td>
<td>TAAD, early aortic dissection, AAA, coronary artery aneurysm, dissection, aortic tortuosity, small vessel CVD</td>
<td>4.5–5.056</td>
<td>AD</td>
<td>615436</td>
</tr>
<tr>
<td>SKI</td>
<td>Sloan Kettering proto-oncoprotein</td>
<td>No†</td>
<td>+</td>
<td>–</td>
<td>Shprintzen–Goldberg syndrome</td>
<td>ARD, arterial tortuosity, pulmonary artery dilatation, other (splenic) arterial aneurysms57</td>
<td>Standard</td>
<td>AD</td>
<td>182212</td>
</tr>
<tr>
<td>SLC2A10</td>
<td>Glucose transporter 10</td>
<td>No†</td>
<td>+</td>
<td>–</td>
<td>Arterial tortuosity syndrome</td>
<td>ARD, ascending aortic aneurysms58, other arterial aneurysms, arterial tortuosity, elongated arteries aortic/pulmonary artery stenosis</td>
<td>Standard</td>
<td>AR</td>
<td>208050</td>
</tr>
<tr>
<td>SMAD2</td>
<td>SMAD2</td>
<td>No</td>
<td>+</td>
<td>–</td>
<td>Unidentified CTD with arterial aneurysm/dissections</td>
<td>ARD, ascending aortic aneurysms, vertebral/carotid aneurysms and dissections, AAA19,60</td>
<td>Standard</td>
<td>AD</td>
<td>Unassigned</td>
</tr>
<tr>
<td>SMAD3</td>
<td>SMAD3</td>
<td>Partially,61</td>
<td>+</td>
<td>+</td>
<td>LDS type 3</td>
<td>ARD, TAAD, early aortic dissection, AAA, arterial tortuosity, other arterial aneurysms/dissections, IA, BAV62,63</td>
<td>4.0–4.215,38</td>
<td>AD</td>
<td>613795</td>
</tr>
<tr>
<td>SMAD4</td>
<td>SMAD4</td>
<td>Yes,64</td>
<td>+</td>
<td>–</td>
<td>JP/HHT syndrome</td>
<td>ARD, TAAD, AVMs, IA65,66</td>
<td>Standard</td>
<td>AD</td>
<td>175050</td>
</tr>
<tr>
<td>SMAD6</td>
<td>SMAD6</td>
<td>No†</td>
<td>–</td>
<td>+</td>
<td>AOVD2</td>
<td>BAV/TAAAD6</td>
<td>Standard</td>
<td>AD</td>
<td>602931</td>
</tr>
<tr>
<td>TGFβ2</td>
<td>TGF-β2</td>
<td>Yes,67</td>
<td>+</td>
<td>+</td>
<td>LDS type 4</td>
<td>ARD, TAAD, arterial tortuosity, other arterial aneurysms, BAV62,68</td>
<td>4.5–5.069</td>
<td>AD</td>
<td>614816</td>
</tr>
<tr>
<td>TGFβ3</td>
<td>TGF-β3</td>
<td>No†</td>
<td>+</td>
<td>–</td>
<td>LDS type 5</td>
<td>ARD, TAAD, AAA/dissection, other arterial aneurysms, IA/dissection70</td>
<td>Standard</td>
<td>AD</td>
<td>615582</td>
</tr>
<tr>
<td>TGFβR1</td>
<td>TGF-β receptor type 1</td>
<td>Yes,71</td>
<td>+</td>
<td>+</td>
<td>LDS type 1 + AAT5</td>
<td>TAAD, early aortic dissection, AAA, arterial tortuosity, other arterial aneurysms/dissection, IA, PDA, BAV,72</td>
<td>4.0–4.515,38,73</td>
<td>AD</td>
<td>609192</td>
</tr>
<tr>
<td>TGFβR2</td>
<td>TGF-β receptor type 2</td>
<td>Yes,64,71</td>
<td>+</td>
<td>+</td>
<td>LDS type 2 + AAT3</td>
<td>TAAD, early aortic dissection, AAA, arterial tortuosity, other arterial aneurysms/dissection, IA, PDA, BAV,72</td>
<td>4.0–4.515,38,73</td>
<td>AD</td>
<td>610168</td>
</tr>
</tbody>
</table>

Abbreviations: AAA, abdominal aortic aneurysm; AAT, aortic aneurysm; familial thoracic; AD, autosomal dominant; AOVD, aortic valve disease; AR, autosomal recessive; ARD, aortic root dilatation; AVM, arteriovenous malformation; BAV, bicuspid aortic valve; CAD, coronary artery disease; CTD, connective tissue disease; CVD, cerebrovascular disease; EDS, Ehlers–Danlos syndrome; FTAAD, familial thoracic aortic aneurysm; FTAAD, familial thoracic aortic aneurysm and/or dissection; HHT, hereditary hemorrhagic telangiectasia; IA, intracranial aneurysm; JP, juvenile polyposis; LDS, Loeys-Dietz syndrome; MYHMY, moyamoya
disease; OMIM, Online Mendelian Inheritance in Man; PDA, patent ductus arteriosus; SVAS, supravalvular aortic stenosis; TGF, transforming growth factor; TAAD, thoracic aortic aneurysm and/or dissection; TGFBR, TGF-β receptor; XLD, X-linked dominant

It is important to note that since mutations in many of these genes are rare and have only recently been implicated in TAAD, there is a lack of adequate prospective clinical studies. Therefore, it is difficult to establish threshold diameters for intervention for TAAs, and each individual must be considered on a case by case basis, taking into account the rate of change in aneurysm size (> 0.5 cm per year is considered rapid), any family history of aortic dissection at diameters < 5.0 cm, and the presence of significant aortic regurgitation, which are all indications for early repair if present.

A “*” symbol in the syndromic TAAD column indicates that mutations in the gene have been found in patients with syndromic TAAD (same for the nonsyndromic TAAD column). A “+” symbol in the syndromic TAAD column indicates that mutations in the gene have not been found in patients with syndromic TAAD (same for the nonsyndromic TAAD column).

A reference is provided for each of the associated vascular characteristics not reported in the OMIM entry for that gene.

Standard = surgical intervention at 5.0 to 5.5 cm.

Early aortic dissection* = dissection at aortic diameters < 5.0 cm.

Individuals with MYLK and ACTA2 mutations have been shown to have aortic dissections at a diameter of 4.0 cm.33,34

There are no data to set threshold diameters for the surgical intervention for LDS type IV.38 The Canadian guidelines recommend surgery for aortic root sizes of 4.0 to 5.0 cm and ascending aorta sizes of 4.2 to 5.0 cm, though these patients are at high risk of surgical complications due to poor-quality vascular tissue.24

There are limited data concerning the timing of surgical intervention for LDS type 4. However, there has been a case of a type A aortic dissection at an aortic diameter < 5.0 cm hence, the recommended threshold range of 4.5 to 5.0 cm.

Current US guidelines recommend prophylactic surgery for LDS types 1 and 2 at ascending aortic diameters of 4.0 to 4.2 cm.15,38 However, the European guidelines state that more clinical data are required.22

Patients with TGFBR2 mutations have similar outcomes to patients with FBN1 mutations once their disease is diagnosed,75 and the clinical course of LDS 1 and 2 does not appear to be as severe as originally reported.73,76,77 A more nuanced approach proposed by Jondeau et al utilizing the presence of TGFBR2 mutations (versus TGFBR1 mutations), the co-occurrence of severe systemic features (arterial tortuosity, hypertelorism, wide scarring), female gender, low body surface area, and a family history of dissection or rapid aortic root enlargement, which are all risk factors for aortic dissection, may be beneficial for LDS 1 and 2 patients to avoid unnecessary surgery at small aortic diameters.73 Therefore, in LDS 1 or 2 individuals without the above features, Jondeau et al maintain that 4.5 cm may be an appropriate threshold, but females with TGFBR2 mutations and severe systemic features may benefit from surgery at 4.0 cm.73

Wenstrup et al found that mice heterozygous for an inactivating mutation in Col5a1 exhibit decreased aortic compliance and tensile strength relative to wild-type mice.28

In an earlier paper, Park et al recently reported that Col5a2 haploinsufficiency increased the incidence and severity of AAA and led to aortic arch ruptures and dissections in an angiotensin II-induced aneurysm mouse model.79

Guo et al found that knockdown of mat2a in zebrafish led to defective aortic arch development.49

Comb et al demonstrated that Mfap2 and Mfap5 double knockout (Mfap2−/−; Mfap5−/−) mice exhibit age-dependent aortic dilation, though this is not the case with Mfap5 single knockout mice.50

While Kuan et al reported that a mouse knock-in model (Myh11 R247C/R247C) does not lead to a severe vascular phenotype under normal conditions,81 Bellini et al demonstrated that induced hypertension in this mouse model led to intramural hemorrhages (separation of aortic wall layers without dissection) or premature deaths (due to aortic dissection based on necropsy according to unpublished data by Bellini et al) in over 20% of the R247C mice, accompanied by focal accumulation of glycosaminoglycans within the aortic wall (a typical histological feature of TAAD).

Wang et al demonstrated that Smc-specific knockdown of Mylk in mice led to histopathological changes (increased pools of proteoglycans) and altered gene expression consistent with medial degeneration of the aorta, though no aneurysm formation was observed.

Koenig et al recently found that Notch1 haploinsufficiency exacerbates the aeurysmal aortic root dilation in a mouse model of Marfan syndrome and that Notch1 heterozygous mice exhibited aortic root dilation, abnormal smooth muscle cell morphology, and reduced elastic laminae.82

Doyle et al found that knockdown of paralogs of mammalian SKI in zebrafish led to craniofacial and cardiac anomalies, including failure of cardiac looping and malformations of the outflow tract.57 Berk et al showed that mice lacking ski exhibit craniofacial, skeletal muscle, and central nervous system abnormalities, which are all features of Shprintzen-Goldberg syndrome, but no evidence of aneurysm development was reported.83

Mice with homozgyous missence mutations in S1c2a10 have not been shown to have the vascular abnormalities seen with arterial tortuosity syndrome,84 though Cheng et al did demonstrate that such mice do exhibit abnormal elastogenesis within the aortic wall.85

Tan et al demonstrated that Smad3 knockout mice only developed aortic aneurysms with angiotensin II-induced vascular inflammation, though the knockout mice did have medial dissections evident on histological analysis of their aortas and exhibited aortic dilation relative to wild-type mice prior to angiotensin II infusion.61

Galvin et al demonstrated that Madh6, which encodes Smad6, mutant mice exhibited defects in cardiac valve formation, outflow tract septation, vascular tone, and ossification but no aneurysm development was observed.86

Tgfβ3 knockout mice die at birth from cleft palate60, but minor differences in the position and curvature of the aortic arches of these mice compared with wild-type mice have been described.87
Mutations in these genes lead to a spectrum of risk and severity of type A and B aortic dissections, as well as different extra-aortic manifestations. Specific mutations in ACTA2 are estimated to account for 12 to 21% of familial nonsyndromic TAAD, while mutations in syndromic genes (FBN1, TGFBR1, TGFBR2, SMAD3, and TGFB2) are estimated to account for an additional 14% of cases of familial nonsyndromic TAAD. Other genes listed in Table 1 are estimated to contribute to 1 to 2% each or less of familial nonsyndromic TAAD. Given that the majority of familial nonsyndromic TAAD cannot be explained by a mutation in one of the known genes associated with TAAD, it is likely that additional genes remain to be identified.

Several important genetic findings have been reported during the past year. Using exome sequencing of 441 patients with bicuspid aortic valve and thoracic aortic aneurysm, Gillis et al identified pathogenic mutations in SMAD6 in 11 afflicted individuals, adding to the growing list of genes associated with TAAD. Additionally, in an exome sequencing study of 27 patients with syndromic or familial TAAD (specifically focused on three pairs of first-degree relatives with the same pathogenic TAAD variant but differing phenotypic severity from three independent families), Landis et al found that variants within two genes, ADCK4 and COL15A1, segregated with mild disease severity among thoracic aortic aneurysm patients, offering clues that may help explain the reduced penetrance and variable expression observed in those with TAAD. Lastly, though not introducing a novel association, work by Franken et al on 290 Marfan syndrome (MFS) patients recently expanded our understanding of the genotype-phenotype relationships in TAAD—by demonstrating that among individuals with MFS, those with haploinsufficient mutations in FBN1 have larger aortic root diameters that exhibit a more rapid dilation rate than those with dominant negative mutations. Similarly, De Cario et al found that the presence of certain common polymorphisms in TGFBR1 and TGFBR2 was associated with reduced cardiovascular disease severity among patients with MFS.

These studies completed in 2017 illustrate the dynamic nature of the field of TAAD genetics. Through continued investigation and expanded access to genetic testing for affected patients and their family members, whole genome sequencing will undoubtedly continue to add new genes to the roster of causes for familial TAAD. Molecular genetics will continue to revolutionize the approach to patients afflicted with this devastating disease, permitting the application of genetically personalized aortic care. A major challenge in the field remains the lack of functional studies to prove the pathogenicity of identified variants.

We will continue to provide a yearly update and a revised summary table and revised intervention criterion table in AORTA at the end of each calendar year.

Conflict of Interest
The authors declare no conflict of interest related to this manuscript.

Funding
None.

Acknowledgements
None.
References

21 Germain DP. Ehlers-Danlos syndrome type IV. Orphanet J Rare Dis 2007;2:32

37 Morris SA, Orbach DB, Geva T, Singh MN, Gauvreau K, Lacro RV. Increased vertebral artery tortuosity index is associated with adverse outcomes in children and young adults with connective tissue disorders. Circulation 2011;124(04):388–396

38 Hiratzka LF, Bakris GL, Beckman JA, et al; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines; American Association for Thoracic Surgery; American College of Radiology; American Stroke Association;

51. Retaldeau K, Arhatte M, Demolombe S, et al. Smooth muscle filament A is a major determinant of conduit artery structure and function at the adult stage. Pfugers Arch 2016;468(07):1151–1160

64. Pannu H, Tran-Fadulu V, Papke CL, et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet 2007;16(20):2453–2462

83 Berk M, Desai SY, Heyman HC, Colmenares C. Mice lacking the ski proto-oncogene have defects in neurulation, craniofacial, patterning, and skeletal muscle development. Genes Dev 1997;11(16):2029–2039
84 Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet 2015;24(23):6769–6787

2018 Update on Genetics of TAAD Brownstein et al.