Tim

Factor X and its Activation

Waterloo Room

0392 KINETICS OF FACTOR X ACTIVATION BY FACTOR IX . THE EFFECTS OF PHOSPHOLIPID AND 14.00 FACTOR VIIIa.

G.v.Dieyen *, J.Rosing, G.Tans and H.C.Hemker, Dept.Biochemistry,State University of Limburg, Maastricht, The Netherlands.

The kinetics of factor X activation by activated clotting factor IX was measured either in the presence or absence of phospholipid, Ca-ions and factor VIII $_a^a$. This study was carried out with purified bovine clotting factors. The rate of factor X and the V as measured using the chromogenic substrate S 2222. Both the K for factor X and the V of factor X formation were determined for different compositions of the factor X activating complex in order to get more insight in the role of phospholipid, Ca^{2+} and factor VIII, in factor X activation. With factor IX, alone, the activation of factor X is a very inefficient process. The presence of phospholipids predominantly lowers the $K_{\rm m}$ for factor X while in contrast factor VIII_ mainly increases the $V_{\rm max}$ of factor X formation. The implications of these findings for the mechanism of factor X activation in the intrinsic pathway will be discussed.

KINETICS OF THE INHIBITORY EFFECT OF FACTOR IX OF FACTOR X BY FACTOR VII AND BOVINE TISSUE FACTOR. 14.15 0393 IN THE ACTIVATION

> B.Østerud*, C.K.Kasper and S.I. Rapaport, Department of Medicine, University of California, San Diego, U.S.A.

F.IX is giving a prolonged prothrombin time with bovine tissue factor (T.F.). In the present study the inhibitory effect of purified F IX (T.F.). In the present study the inhibitory effect of purified F.IX_{Bm} was tested in a F.VII assay that measures the ability of F.VII to activate F.X in the presence of bovine T.F. and Ca⁺⁺, followed by the quantitation of formed F.Xa by the synthetic substrate benzoyl -L-Ile-Glu-Gly-L-Arg-pnitroanilide. Experiments were carried out with different concentrations of F.IX_m and F.X, keeping the concentrations of F.VII and bovine T.F. constant. Lineweaver-Burk plot of the data showed that all the curves crossed the 1/V axis in one point - no inhibition by $F.IX_{Bm}$ at infinite concentrations of F.X. Thus, $F.IX_{Bm}$ acts as competitive inhibitor to F.X in the activation of F.X by F.VII and bovine T.F. By plotting the 1/Vagainst the inhibitor concentrations (F.IX_{Bm} conc), a Dixon plot, the K_{i} for F.IX was determined to be 0.017 μ M. BM Normal F.IX was also found to be a competitive inhibitor to F.X but 4-5 times higher concentrations of F.IX were needed to give the same inhibit tion as F.IX $_{\rm Bm}$. Utilizing human T.F. instead of bovine T.F. in this assay resulted in no significant inhibition by either F.IX of F.IX $_{\rm Bm}$.