Preparation of 2-Arylquinolines from 2-Arylethyl Bromides and Aromatic Nitriles with Magnesium and N-Iodosuccinimide

Hiroki Naruto
Hideo Togo

Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
togo@faculty.chiba-u.jp

Abstract
Treatment of 2-arylethylmagnesium bromides, prepared from 2-arylethyl bromides and magnesium, with aromatic nitriles, followed by reaction with water and then with N-iodosuccinimide under irradiation with a tungsten lamp, gave the corresponding 2-arylquinolines in good to moderate yields under transition-metal-free conditions. 2-Alkylquinolines could be also obtained in moderate yields by the same procedure with 2-arylethyl bromides, magnesium, aliphatic nitriles bearing a secondary alkyl group, and N-iodosuccinimide.

Key words quinolines, 2-arylethyl bromides, aromatic nitriles, Grignard reaction, N-iodosuccinimide

Quinolines are one of the most important nitrogen-containing heteroaromatics, because of their potent biological activities, such as antimalarial, antibacterial, anti-inflammatory, and anticancer activities.1 As typical examples (Figure 1), quinine (natural product) and chloroquine (synthesized product) are antimalarials.2

Figure 1 Typical quinolines possessing antimalarial activity

Synthetic studies of the quinoline core have been actively carried out.3 Conventionally, the quinoline core has been prepared by named reactions, such as the Skraup synthesis, the Friedländer synthesis, the Combes synthesis, and the Conrad–Limpach synthesis, among others.4 Recent reports of the preparation of the quinoline core are as follows:5 the preparation of 2-aryl-4-methylquinolines with hydrazones of o-aminoacetophenone and ethynylarenes in the presence of [RhCp*Cl2];5a the preparation of 2-arylquinolines with anilines and aromatic aldehydes in the presence of FeCl3 in nitroethane;5b the preparation of 2-aryl-3-{[trifluoromethyl]sulfonyl}quinolines with o-alkynylbenzyl azides, Na2S2O5, and AgSC(S)F5;5c the preparation of 2-aminocarbonylquinolines with o-aminobenzyl alcohols and o-arylcyanotriazoles in the presence of Mn(I)–NNS complex;5d the preparation of 4-amino-2-[(difluoromethyl)-3-(methoxy)carbonyl]quinolines with o-aminobenzonitriles and methyl 4,4-difluorobut-2-ynoate;5e the preparation of 4-phenylquinolines with anilines, o-alkynyl esters, and phenylacetylene in the presence of AgOTf;5f the preparation of 2-aryl-3,4-diarylquinolines with α-(N-arylamino)acetophenones, 1,1-diarylethenes, and di-tert-butyl peroxide in the presence of Cu(OTf)2;5g the preparation of 4-(acrylamidomethyl)-2-aminoquinolines with β-(o-aminophenyl)-α,β-ynamides and nynamides in the presence of Su(1);5h the preparation of 2-aminoquinolines with N-acetyl-o-alkynylanilines and isocyanides in the presence of Pd(OAc)2;5i the preparation of 2-aryl-3-tosylquinolines with anthranils and N-tosylhydrazones in the presence of Cu(OAc)2 and AgOTf;5j the preparation of 6-(aryldiazenyl)-3-iodoquinolines with (o-aminoaryl)propargyl alcohols, aryldiazonium salts, and I2;5k the preparation of 3-aryl-2-[(aryl sulfonyl)quinolines with o-alkynylisocyanobenzenes and p-TsNa;5l and the preparation of 2,4-diarylquinolines with o-aminobenzyl alcohols and alcohols in the presence of Mn(I)–PNP complex.5m

On the other hand, recently, synthetic uses of the iminyl radical (nitrogen-centered radicals) have become popular, particularly in the preparation of nitrogen-containing heterocyclic compounds such as dihydropyrroles and phenanthridines.6 As synthetic uses of iminyl radicals formed from ketimines and molecular iodine, we reported a one-pot
preparation of 6-arylanthranilides by the treatment of α-cyanobiaryls with aryllithiums, followed by reaction with water and then with molecular iodine at 60 °C\(^7\) and of 2-aryquinolines by the treatment of 3-arylpropionitriles with aryllithiums, followed by reaction with water and then with N-iodosuccinimide (NIS) under irradiation with a tungsten lamp (Scheme 1, eq 1).\(^8\) The latter method is suitable for the preparation of 2-aryquinolines bearing an alkyl group, such as methyl, ethyl, or isopropyl, at the 3-position. However, it cannot be practically used for the preparation of 3-arylpropionitriles due to the occurrence of α-proton abstraction from 3-arylpropionitriles by aryllithiums in the 1st reaction step. Herein, we report the transformation of 2-arylethyl bromides into 2-aryquinolines by the treatment with magnesium and then with aromatic nitriles, followed by reaction with water and then with NIS under irradiation with a tungsten lamp (Scheme 1, eq 2).

![Scheme 1](image)

First, to understand the reactivity of 2-arylethylmagnesium bromides toward aromatic nitriles and secondary aliphatic nitriles, the reactions of 2-phenylethylmagnesium bromide with p-tolunitrile (1A) and isobutryronitrile (1X) at 70 °C for 6 and 24 hours, followed by aqueous HCl hydrolysis to form the corresponding ketones 2A' and 2X', respectively, were carried out (Scheme 2, eq 1 and 2). The results suggest that warming treatment at 70 °C for 24 hours is better, and the maximum yields of ketones 2A' and 2X' with p-tolunitrile (1A) and isobutryronitrile (1X) were 94% and 57%, respectively, due to the partial occurrence of α-proton abstraction from isobutryronitrile by 2-phenylethylmagnesium bromide. An excess amount of 2-phenylethylmagnesium bromide was used as the reactivity of 2-phenylethylmagnesium bromide toward p-tolunitrile and toward isobutryronitrile was not sufficiently high and warming conditions at 70 °C for 24 hours were required.

![Scheme 2](image)

Then, treatment of 2-phenylethylmagnesium bromide, prepared from 2-phenylethyl bromide (3.0 equiv) and magnesium (3.3 equiv) in THF (5.0 mL), and p-tolunitrile (1A, 2.0 mmol) at 70 °C for 24 hours (1st step), followed by the addition of water (5.0 mL, 2nd step), gave p-methylphenyl 2-phenylethyl ketimine (2A). After rapid extraction of ketimine 2A with chloroform and removal of the solvent, ketimine 2A was treated with NIS (3.0 equiv) in 1,2-dichloroethane (DCE, 6.0 mL) under irradiation with a tungsten lamp (300 W) for 3 hours in the temperature range of 30–40 °C (3rd step) to give 2-(4-methylphenyl)quinoline (3A) in 73% yield, as shown in Table 1, entry 1. After the same reactions in the 1st reaction step, treatment of the reaction mixture with methanol (3.0 mL) and then DCE (6.0 mL), followed by reaction with NIS (3.0 equiv) under irradiation with a tungsten lamp, gave 3A in only 21% yield (entry 2). Thus, the one-pot preparation of 2-(4-methylphenyl)quinoline (3A) from 2-phenylethylmagnesium bromide and p-tolunitrile (1A) was not effective because NIS was consumed by remaining magnesium and methanol. Under the same procedure and conditions as those of entry 1 (1st and 2nd steps), treatment of ketimine 2A with NIS (3.5 equiv) in DCE under irradiation with a tungsten lamp for 3 and 6 hours generated quinoline 3A in 82% and 81% yield, respectively (entries 3 and 4), although the same treatment with
NIS (4.0 equiv) slightly reduced the yield of 3A (entry 5). Under the same procedure and conditions as those of entry 3, a solution of ketimine 2A and NIS was irradiated with an LED lamp (13.6 W) and a 40 W tungsten lamp, instead of a 300 W tungsten lamp, in the 3rd reaction step to give 3A in 71% and 67% yield, respectively (entries 6 and 7). Moreover, room light instead of irradiation with a 300 W tungsten lamp was not effective at all (entry 8). On the other hand, warming treatment of the mixture under dark conditions in the 3rd reaction step gave 2-(4-methylphenyl)quinoline (3A) in 66% yield (entry 9). Thus, entry 3 showed the best result. When 1,3-diiodo-5,5-dimethylhydantoin (DIH, 1.75 equiv) was used instead of NIS under the same procedure and conditions as those of entry 3, 3A was obtained in 82% yield again (entry 10). On the other hand, warming treatment of a solution of ketimine 2A with I₂ in the presence of K₂CO₃ at 70 °C for 3 hours, and also irradiation treatment of ketimine 2A with N-bromosuccinimide (NBS) or N-chlorosuccinimide (NCS) with a tungsten lamp for 3 hours at 30–40 °C, did not generate 3A at all (entries 11–13), and p-methylphenyl 2-phenylethyl ketone (2A*), a hydrolyzed compound of ketimine 2A by quenching the reaction mixture with aqueous Na₂SO₄, was obtained in more than 80% yield. Thus, NIS and DIH were effective for the present 3rd reaction step. When the 3rd reaction step was carried out in the presence of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO, 1.5 equiv) or 2,6-di-tert-butyl-p-cresol (BHT, 1.5 equiv), 3A was not obtained at all (entries 14 and 15).

Based on those results, 2-phenylethylmagnesium bromide prepared from 2-phenylethyl bromide (3.0 equiv) and magnesium (3.3 equiv) in THF (5.0 mL) was treated with aromatic nitriles 1B–10 (2.0 mmol), bearing an o-methylphenyl (B), m-methylphenyl (C), phenyl (D), p-tert-butyphenyl (E), 3,5-dimethylphenyl (F), p-methoxyphenyl (G), p-fluorophenyl (H), p-chlorophenyl (I), m-bromophenyl (J), p-bromophenyl (K), p-(triﬂuoromethyl)phenyl (L), β-naphthyl (M), p-biphenyl (N), or p-phenoxyphenyl (O) group, at 70 °C for 24 hours (1st step), and then with water (5.0 mL, 2nd step) to give aryl 2-phenylethyl ketimines 2. After extraction of ketimines 2 with chloroform and removal of the solvent, ketimines 2 were treated with NIS (3.5 equiv) in DCE (6.0 mL) under irradiation with a tungsten lamp (300 W) for 3 hours in the temperature range of 30–40 °C (3rd step) to form 2-arylquinolines 3B–30 in good to moderate yields, except 3B in 35% yield (Scheme 3). As a gram-scale experiment, when 2-phenylethylmagnesium bromide was treated with benzonitrile (1D, 10 mmol) under the same procedure and conditions, 2-phenylquinoline (3D) was obtained in 71% yield (Scheme 3). Treatment of 2-phenylethylmagnesium bromide with aromatic nitriles 1P and 1Q bearing an acetal and MOM group under the same procedure and conditions generated the corresponding 2-arylquinolines 3P and 3Q in a moderate and good yield, respectively.

When 2-(p-methylphenyl)ethylmagnesium bromide, 2-(p-chlorophenyl)ethylmagnesium bromide, and 2-(p-methoxyphenyl)ethylmagnesium bromide were used instead of 2-phenylethylmagnesium bromide in the reaction with benzonitrile (1D) under the same procedure and conditions, 7-methyl-2-phenylquinoline (3R), 7-chloro-2-phenylquinoline (3S), and 7-methoxy-2-phenylquinoline (3T) were obtained in good to moderate yields (Scheme 3). Treatment of 2-phenyl-1-propylimagnesium bromide with benzonitrile and p-tolunitrile under the same procedure and conditions generated 4-methyl-2-phenylquinoline (3U) and 4-methyl-2-(4-methylphenyl)quinoline (3V), respectively, in moderate yields. On the other hand, treatment of

---

Table 1 Optimization of the Reaction Conditions for Compound 3A

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagent X (equiv)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NIS 3.0</td>
<td>3</td>
<td>73</td>
</tr>
<tr>
<td>2a</td>
<td>NIS 3.0</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>NIS 3.5</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>NIS 3.5</td>
<td>6</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>NIS 4.0</td>
<td>3</td>
<td>78</td>
</tr>
<tr>
<td>6b</td>
<td>NIS 3.5</td>
<td>3</td>
<td>71</td>
</tr>
<tr>
<td>7c</td>
<td>NIS 3.5</td>
<td>3</td>
<td>67</td>
</tr>
<tr>
<td>8d</td>
<td>NIS 3.5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>9a</td>
<td>DIH 1.75</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>11f</td>
<td>I₂ 3.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>NBS 3.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>NCS 3.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>14b</td>
<td>NIS 3.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>15b</td>
<td>NIS 3.5</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

a MeOH (3.0 mL) was used instead of H₂O, and the obtained mixture was directly treated with NIS under irradiation with a tungsten lamp.
b A white LED lamp (13.6 W) was used, instead of a 300 W tungsten lamp.
c An 40 W tungsten lamp was used, instead of a 300 W tungsten lamp.
d Room light (fluorescent lighting, 32 W) was used, instead of a 300 W tungsten lamp.
e The 3rd step reaction was carried out at 70 °C under dark conditions.
f In the 3rd step reaction, K₂CO₃ (1.5 equiv) was added.
g In the 3rd step reaction, TEMPO (1.5 equiv) was added.
h In the 3rd step reaction, BHT (1.5 equiv) was added.

---

© 2020. Thieme. All rights reserved. Synthesis 2020, 52, A–I
1-phenyl-2-propylmagnesium bromide, derived from 2-bromo-1-phenylpropane and magnesium, with p-toluonitrile under the same procedure and conditions gave 3-methyl-2-(4-methylphenyl)quinoline (3W) in low yield, as addition of the Grignard reagent to p-toluonitrile in the 1st reaction step does not proceed effectively due to steric hindrance.

When 2-phenylethylmagnesium bromide was treated with isobutyronitrile (1X), α-methylbutyronitrile (1Y), and cyclohexanecarbonitrile (1Z), which are aliphatic nitriles bearing a secondary alkyl group, under the same procedure and conditions, 2-isopropylquinoline (3X), 2-sec-butylquinoline (3Y), and 2-cyclohexylquinoline (3Z), respectively, were obtained in moderate yields (Scheme 3). However, treatment of 2-phenylethylmagnesium bromide with propanonitrile, an aliphatic nitrile bearing a primary alkyl group, under the same procedure and conditions generated 2-ethylquinoline in low yield (~20%), due to α-proton abstraction from propanonitrile by the Grignard reagent in the 1st reaction step. Moreover, treatment of 2-phenylethylmagnesium bromide with pivalonitrile, an aliphatic nitrile bearing a tertiary alkyl group, under the same procedure and conditions did not generate 2-tert-butylquinoline at all and, instead, 3-phenylpropionitrile was obtained in 50% yield through the radical β-elimination of the formed imino-nitrogen-centered radical. Thus, the present method is limited to the preparation of 2-arylquinolines mainly and 2-alkylquinolines bearing a secondary alkyl group.

Scheme 3 Preparation of 2-arylquinolines. a 2nd step reaction was carried out for 6 h. b Benzonitrile (1D, 10 mmol) was used. c 2-Phenylethyl bromide (4.0 equiv) was used. d Instead of 2-phenylethyl bromide, 2-[(p-methylphenyl)ethyl]bromide (3.0 equiv) was used. e Instead of 2-phenylethyl bromide, 2-[(p-chlorophenyl)ethyl]bromide (3.0 equiv) was used. f Instead of 2-phenylethyl bromide, 2-[(p-methoxyphenyl)ethyl]bromide (3.0 equiv) was used. g 3rd step reaction was carried out at 10–20 °C. h Instead of 2-phenylethyl bromide, 2-[(p-phenyl)propyl]bromide (3.0 equiv) was used. i Instead of 2-phenylethyl bromide, 2-bromo-1-phenylpropane (3.0 equiv) was used.
An opposite approach for the preparation of 2-arylquinolines with β-arylpropionitriles and arylmagnesium bromides to form ketimines 2, then the same reaction with NIS, could be proposed. However, treatment of β-phenylpropionitrile and p-methylphenylmagnesium bromide at 70 °C for 24 hours did not generate p-methylphenyl 2-phenylethyl ketimine (2A) effectively due to α-proton abstraction from β-phenylpropionitrile by p-methylphenylmagnesium bromide. Thus, the opposite approach (reaction of β-arylpropionitriles and ArMgBr, followed by reaction with NIS under irradiation with a tungsten lamp) is not practical to obtain 2-arylquinolines 3.

A possible reaction pathway is shown in Scheme 4. Ketimine 2 formed from the reaction of 2-phenylethylmagnesium bromide and aromatic nitrile 1 (1st and 2nd steps) reacts with NIS to produce N-iodoimine I together with the generation of succinimide (NS). Once N-iodoimine I is formed, smooth homolytic bond cleavage of its N–I bond occurs to form imino-nitrogen-centered radical II and an iodine atom. Imino-nitrogen-centered radical II cyclizes onto the aromatic ring to form intermediate III, which is further oxidized to 3,4-dihydroquinoline IV by molecular iodine. Oxidation of 3,4-dihydroquinoline IV by NIS gives 2-arylquinoline 3 via the formation of N-iodonium compound V and HI elimination from compound VI.

In conclusion, 2-arylquinolines could be obtained smoothly and efficiently by the treatment of aryl 2-aryl ethyl ketimines, prepared from the reaction of 2-aryl ethylmagnesium bromides and aromatic nitriles, with NIS under irradiation with a tungsten lamp, through the formation of N-iodoimines and imino-nitrogen-centered radicals, and radical cyclization onto the aromatic ring. This is a new approach for the preparation of 2-arylquinolines from commercially available 2-aryl ethyl bromides, aromatic nitriles, magnesium, and NIS under transition-metal-free conditions.

1H NMR spectra were measured on 400 MHz spectrometers. Data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sext = sextet, sept = septet, m = multiplet), coupling constant (Hz), integration. 13C NMR spectra were measured at 100 MHz on 400 MHz spectrometers. Chemical shifts are reported in ppm from the solvent resonance employed as the internal standard (CDCl3 at 77.0 ppm). Characteristic peaks in the IR spectra are reported in wave-numbers, cm–1. High-resolution mass spectra were recorded with Thermo Fisher Scientific Exactive Orbitrap mass spectrometers. Melt- ing points are uncorrected. TLC was performed using 0.25 mm silica gel plates (60 F254). The products were purified by column chromatography on neutral silica gel 60N (63–200 mesh).

1-(4-Methylphenyl)-3-phenylpropan-1-one (2A′)

Yield: 422.1 mg (94%); yellow oil.

IR (neat): 2959, 1676 cm–1.

1H NMR (400 MHz, CDCl3): δ = 2.41 (s, 3 H), 3.06 (t, J = 7.3 Hz, 2 H), 3.27 (t, J = 7.0 Hz, 2 H), 7.18–7.31 (m, 7 H), 7.85 (d, J = 8.2 Hz, 2 H).

13C NMR (100 MHz, CDCl3): δ = 12.1, 30.1, 40.2, 126.0, 128.0, 128.3, 128.4, 129.2, 134.2, 141.3, 143.7, 198.7.


4-Methyl-1-phenylpentan-3-one (2X′)

Yield: 200.9 mg (57%); yellow oil.

IR (neat): 2968, 1705 cm–1.

1H NMR (400 MHz, CDCl3): δ = 1.07 (d, J = 6.8 Hz, 6 H), 2.57 (quintet, J = 7.0 Hz, 1 H), 2.77 (t, J = 7.7 Hz, 2 H), 2.89 (t, J = 7.7 Hz, 2 H), 7.17–7.20 (m, 3 H), 7.29 (d, J = 7.7 Hz, 2 H).

1C NMR (100 MHz, CDCl3): δ = 18.0, 29.7, 40.8, 41.8, 125.9, 128.2, 128.3, 141.2, 213.5.


2-(4-Methylphenyl)quinoline (3A); Typical Procedure for the Preparation of 2-Arylquinolines 3 from 2-Aryl Ethyl Bromides and Aromatic Nitriles 1

To a solution of Mg (160.4 mg, 6.6 mmol) in THF (3.0 mL) was added 2-phenylethyl bromide (1110.0 mg, 6.0 mmol) at room temperature under argon atmosphere. After 90 min, the obtained Grignard reagent solution was added to a solution of p-tolunitrile (1A′) (234.3 mg, 2.0 mmol) in THF (2.0 mL) at room temperature. The obtained mixture was stirred for 24 h at 70 °C under argon atmosphere. Then, H2O (5.0
2-Phenylquinoline (3D)
IR (neat): 3057, 1618, 1556 cm–1.
Yield: 335.0 mg (76%); yellow oil.

2-(3-Methylphenyl)quinoline (3C)
IR (neat): 3056, 1593, 1501 cm–1.
1H NMR (400 MHz, CDCl3): δ = 2.49 (s, 3 H), 7.28 (d, J = 7.5 Hz, 1 H), 7.42 (t, J = 7.7 Hz, 1 H), 7.53 (td, J = 7.6, 1.1 Hz, 1 H), 7.73 (td, J = 7.7, 1.4 Hz, 1 H), 7.83 (d, J = 8.2 Hz, 1 H), 7.87 (d, J = 8.6 Hz, 1 H), 7.92 (d, J = 7.7 Hz, 1 H), 8.01 (s, 1 H), 8.18 (d, J = 8.4 Hz, 1 H), 8.22 (d, J = 8.6 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 21.5, 119.1, 124.6, 126.1, 127.1, 127.4, 128.2, 128.7, 129.6 (2 C), 130.1, 136.6, 138.5, 139.6, 148.2, 157.5.

2-Phenylquinoline (3D)
Yield: 346.0 mg (84%); white solid; mp 83–85 °C.
IR (neat): 3057, 1597, 1556 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.47 (tt, J = 7.2, 2.1 Hz, 1 H), 7.53 (d, J = 6.4 Hz, 1 H), 7.54 (t, J = 6.9 Hz, 2 H), 7.74 (td, J = 7.8, 1.5 Hz, 1 H), 7.84 (d, J = 8.0 Hz, 1 H), 7.89 (d, J = 8.5 Hz, 1 H), 8.16–8.19 (m, 3 H), 8.24 (d, J = 8.5 Hz, 1 H).
1H NMR (400 MHz, CDCl₃): δ = 7.50 (d, J = 8.5 Hz, 2 H), 7.54 (t, J = 8.1 Hz, 1 H), 7.74 (t, J = 7.7 Hz, 1 H), 7.84 (d, J = 7.9 Hz, 1 H), 7.85 (d, J = 8.6 Hz, 1 H), 8.12–8.17 (m, 3 H), 8.24 (d, J = 8.6 Hz, 1 H).

13C NMR (100 MHz, CDCl₃): δ = 118.5, 126.5, 127.2, 127.5, 129.0, 129.7, 129.8, 130.9, 133.9, 134.7, 136.8, 156.0.


1H NMR (400 MHz, CDCl₃): δ = 7.52–7.57 (m, 3 H), 7.76 (td, J = 7.7, 1.4 Hz, 1 H), 7.86 (d, J = 8.0 Hz, 1 H), 7.88–7.92 (m, 1 H), 7.99–8.02 (m, 2 H), 8.05 (d, J = 8.6 Hz, 1 H), 8.23 (d, J = 8.4 Hz, 1 H), 8.27 (d, J = 8.6 Hz, 1 H), 8.38 (dd, J = 8.7, 1.7 Hz, 1 H), 8.62 (s, 1 H).

13C NMR (100 MHz, CDCl₃): δ = 119.1, 125.0, 126.3, 126.7, 127.1, 127.2 (2 C), 127.5, 127.7, 128.4, 128.6, 128.8, 129.7, 133.5, 133.8, 136.8, 136.9, 148.3, 157.1.


1H NMR (400 MHz, CDCl₃): δ = 7.52–7.57 (m, 3 H), 7.76 (td, J = 7.7, 1.4 Hz, 1 H), 7.86 (d, J = 8.0 Hz, 1 H), 7.88–7.92 (m, 1 H), 7.99–8.02 (m, 2 H), 8.05 (d, J = 8.6 Hz, 1 H), 8.23 (d, J = 8.4 Hz, 1 H), 8.27 (d, J = 8.6 Hz, 1 H), 8.38 (dd, J = 8.7, 1.7 Hz, 1 H), 8.62 (s, 1 H).

13C NMR (100 MHz, CDCl₃): δ = 119.1, 125.0, 126.3, 126.7, 127.1, 127.2 (2 C), 127.5, 127.7, 128.4, 128.6, 128.8, 129.7, 133.5, 133.8, 136.8, 136.9, 148.3, 157.1.

Yield: 305.2 mg (65%); yellow oil.

4-Methyl-2-(4-methylphenyl)quinoline (3V)

IR (neat): 2972, 2913, 1551 cm⁻¹.

Yield: 289.9 mg (66%); yellow oil.

4-Methyl-2-phenylquinoline (3U)

IR (neat): 2987, 2901, 1594, 1547 cm⁻¹.

Yield: 350.4 mg (73%); white solid; mp 102–104 °C.

7-Chloro-2-phenylquinoline (3S)

IR (neat): 3005, 2936, 1557, 1120 cm⁻¹.

Yield: 160.5 mg (34%); yellow oil.

3-Methyl-2-(4-methylphenyl)quinoline (3W)

IR (neat): 3057, 1598, 1557 cm⁻¹.

Yield: 179.0 mg (48%); yellow oil.

2-Cyclohexylquinoline (3Z)

IR (neat): 3063, 1561 cm⁻¹.

Yield: 179.0 mg (48%); yellow oil.

2-Isopropylquinoline (3X)

IR (neat): 3172.1118.

Yield: 158.6 mg (46%); yellow oil.

2-sec-Butylquinoline (3Y)

IR (neat): 3063, 1561 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2972, 2913, 1551 cm⁻¹.

Yield: 222.1 mg (47%); white solid; mp 116–118 °C.

7-Methoxy-2-phenylquinoline (3T)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 172.1118.

2-Chloro-2-phenylquinoline (3T)

IR (neat): 2972, 2913, 1551 cm⁻¹.

Yield: 172.1118.

2-sec-Butylquinoline (3Y)

IR (neat): 3063, 1561 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-sec-Butylquinoline (3Y)

IR (neat): 3063, 1561 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.

2-Chloroquinoline (3Y)

IR (neat): 2924, 2850, 1600, 1502 cm⁻¹.

Yield: 179.0 mg (36%); yellow oil.
References


