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Osteoarthritis (OA) is the most common joint disease in the
United States, and its prevalence is rising due to an aging
population and increasing rates of obesity.1,2 Irreversible and
progressive degradation of the articular cartilage remains the
fundamental feature of OA pathophysiology. Conventional
radiography is considered the reference standard for imaging
of OA; however, joint space narrowing (JSN) on radiography
provides an indirect measure of cartilage loss and is not
sensitive to progression of the disease.3–5 Radiography-based
JSN is nonetheless commonly used as the imaging outcome
measure to establish the effectiveness of disease-modifying
osteoarthritisdrugs (DMOADs).6Theuseof radiographic JSNas
an outcome measure may partly explain why attempts at
developing DMOADs and behavioral therapy for OA have
proven unsuccessful, despite promising preclinical research.7

Regulatory agencies including the U.S. Food and Drug
Administration (FDA) are increasingly recommending imaging
beyond radiography to assess early onset of abnormalities in
OA.8Themultiplanar,multiparametric capabilities ofmagnetic
resonance imaging (MRI) and its excellent soft tissue contrast
allow unparalleled evaluation of all joint structures including
cartilage. Hence MRI-based outcome measures are ideal for

assessment of cartilage degradation in OA. In addition to the
routine clinical MRI, advanced research techniques have been
developed to assess thebiochemical composition ofcartilage in
the earliest stages of OA. These include relaxometry measure-
ments (T2, T2�, and T1ρ mapping), sodium imaging, delayed
gadolinium-enhancedMRI of cartilage (dGEMRIC), glycosami-
noglycan specific chemical exchange saturation transfer (gagC-
EST), and diffusion tensor imaging (DTI). These compositional
MRI techniques serve as quantitative, reproducible, and objec-
tive end points for OA research that will likely be introduced to
clinical radiology practice in the near future.

In this narrative review, we describe the standard clinical
imaging of cartilage in OA. We discuss semiquantitative
scoring systems for the assessment of cartilage that serve
as important outcome measures in research. Lastly, we
highlight advanced compositional MRI techniques that allow
the detection of early articular cartilage degradation.

Cartilage Microarchitecture

Understanding the imaging of chondral degeneration in OA
requires an understanding of the basic ultrastructure of the
articular cartilage. It is composed of primarily fluid (70–80%)
and extracellular matrix (ECM), both of which are essential
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Abstract Osteoarthritis (OA) is the most common joint disease in the United States. The
prevalence of OA is rising due to an aging population and increasing rates of obesity.
Magnetic resonance imaging (MRI) allows an incomparable noninvasive assessment of
all joint structures. Irreversible and progressive degradation of the articular cartilage
remains the hallmark feature of OA. To date, attempts at developing disease-modifying
drugs or biomechanical interventions for treating OA have proven unsuccessful. MRI-
based cartilage imaging techniques have continued to advance, however, and will likely
play a central role in the development of these joint preservation methods of the
future. In this narrative review, we describe clinical MR image acquisition and
assessment of cartilage. We discuss the semiquantitative cartilage scoring methods
used in research. Lastly, we review the quantitative MRI techniques that allow
assessment of changes in the biochemical composition of cartilage, even before the
morphological changes are evident.
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for its normal function.9 The ECM is a network of collagen
fibrils and proteoglycan molecules, with the proteoglycan
consisting of negatively charged glycosaminoglycan (GAGs)
attached to the protein core.9 The negative charge attracts
and holds water within articular cartilagewhile cations such
as sodium (Naþ) counter the negative charge of GAGs. The
redistribution of water within the ECM provides the known
biomechanical properties of cartilage, that is, its ability to
deal with tensile and compressive loads.10 In OA, proteogly-
can loss and disorganization and/or loss of the collagen fiber
network lead to impaired ability of the articular cartilage to
deal with these loads and results in progressive, irreversible
breakdown.11

Clinical MRI of Cartilage

An in-plane resolution of 0.3mm resolves the earliest stage of
morphological cartilage degeneration, that is, fraying of the
articular surface.12Optimal evaluation of cartilagemorphology
on standard clinical MRI, therefore, requires high signal-to-
noise ratio (SNR) andahigh spatial resolution, bothofwhichare
advantages of higher field strength magnets (�1.5T, with
dedicated extremity coils). A recent systemic review and
meta-analysis comparing 1.5-T and 3-T MRI for detection of
morphological cartilage lesions found both field strength mag-
nets toofferhighdiagnostic accuracy;however, the3-TMRIhad
greater accuracy than the1.5 T.13 In 2017, the FDAapproved the
first 7-T MRI system for clinical diagnostic imaging of the
extremities. A comparison of routine clinical knee MRI per-
formedat3Tand7T founddiagnosticconfidenceof radiologists
for cartilage defects to be higher with 7 T.14

In addition to adequate SNRand spatial resolution, detection
of cartilage pathology requires optimal cartilage–synovialfluid
contrast. The International Cartilage Repair Society (ICRS)
protocol for imaging of cartilage includes two-dimensional
(2D) fast spin-echo (FSE) or turbo spin-echo (TSE) pulse

sequences to obtain fat-suppressed proton-density-weighted,
T2-weighted, or intermediate-weighted images.15 These
sequences provide excellent tissue contrast allowing detection
of cartilage lesions with high accuracy; however, they require
acquisition in multiple planes. ►Fig. 1 shows fat-suppressed
proton-density images of the patellofemoral compartment
cartilage in a healthy volunteer (►Fig. 1a) and in a patient
with advanced osteoarthritis (►Fig. 1b). Isotropic sequences
(3D FSE or TSE) obviate the need for multiplanar acquisition,
greatly reducing acquisition time.16 Isotropic imaging suffers
from blurring and lower tissue contrast compared with 2D
sequences;however, thediagnosticaccuracyof isotropicFSEfor
cartilagemorphologywasshowntobesimilar to2DFSEat3T.17

Cartilage-sensitive techniques based on gradient spin-echo
(GRE) such as 3D spoiled gradient recalled echo produce
images with cartilage signal more intense than the surround-
ing tissues, which renders them insensitive to subtle cartilage
lesions and of limited utility in clinical imaging.18 These
techniqueswere used successfully for quantitative assessment
of cartilage thickness and volume in research studies.19–21

Semiquantitative Assessment of Cartilage

Semiquantitative scoring systems for cartilage including the
Outerbridge (1961)22 and Noyes and Stabler (1989)23 classi-
ficationswereoriginally developed for grading the appearance
and quantity of cartilage via direct evaluation during surgery.
The ICRS classification, a 9-point scale, succeeded these initial
scoring systems24 and provided a more comprehensive and
detailed assessment of articular cartilage pathology. All of
these classifications have been adapted for assessment of joint
cartilage on MRI,25–27 primarily for research.

As the use of MRI for OA was researched and increased,
dedicated MRI-based semiquantitative classifications for
whole-organ assessment of joints, most commonly the knee
joint, were developed and validated. In the next section, we

Fig. 1 Sagittal fat-suppressed proton-density images of the patellofemoral compartment cartilage in (a) a healthy volunteer and (b) a patient
with advanced osteoarthritis (OA). The healthy volunteer has normal patellar and femoral trochlear cartilage thickness and signal density. The
patient with OA demonstrates full-thickness cartilage loss overlying the patella (yellow arrow) and overlying the femoral trochlea (red arrow),
with associated subchondral bone marrow edema.
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briefly describe a select few of these systems that are most
likely to be encountered in the published literature.

Whole-Organ Magnetic Resonance Imaging
Score

The Osteoarthritis Initiative (OAI) and the Multicenter Oste-
oarthritis Study (MOST) are two of the largest multicenter
and longitudinal studies of OA that included MRI acquisition
in addition to expansive clinical data for the study of OA.28–33

The Whole-Organ Magnetic Resonance Imaging Score
(WORMS) is the most commonly used scoring system in
kneeOA research andwas used as an outcomemeasure in the
OAI and MOST. The WORMS assesses 14 features in the knee
joint that include articular cartilage integrity, subchondral
bone marrow abnormality, cruciate ligament, and meniscal
integrity among other features.34 Cartilage is graded on an 8-
point scale in 14 subregions subdivided by anatomical land-
marks. Cartilage grades in the different subregions are
frequently summed to provide composite or global cartilage
scores (►Fig. 2).

Boston-Leeds Osteoarthritis Knee Score

Concerns about the responsiveness of WORMS and the
validity of summation of subregional WORMS cartilage
measurements led to the development of the Boston-Leeds
Osteoarthritis Knee Score (BLOKS).35 The BLOKS evaluates
cartilage in nine subregions of the knee. BLOKS I cartilage
score, the more commonly used of the two-part cartilage
scoring component of BLOKS, assesses cartilage on a 4-point
scale. It assigns separate scores for (1) the areal extent of any

cartilage loss in each subregion, and (2) the percentage of
subregion surface area that has a full-thickness loss (►Fig. 2).

MRI Osteoarthritis Knee Score

Both WORMS and BLOKS have limitations, highlighted in a
two-part study comparing thesemethods.36,37 As a result, the
MRI Osteoarthritis Knee Score (MOAKS) was derived from
both the BLOKS and WORMS to improve whole-organ assess-
ment of the knee.38 MOAKS grades cartilage in the same 14
subregions of theknee as are graded inWORMS, but it uses the
grading scale used in the BLOKS “cartilage I” score (►Fig. 1).

Knee Osteoarthritis Scoring System

The Knee Osteoarthritis Scoring System39 is another whole-
organ grading system focused on the knee that grades
cartilage in nine subregions. It assigns separate 4-point
scores for the depth of the cartilage and osseous components
of an osteochondral defect. It also assigns a separate 4-point
score for the surface extent of an osteochondral defect
estimated by its maximal diameter. A focal cartilaginous
defect is well definedwith an acute angle between the defect
and surrounding cartilage. A diffuse defect has an obtuse
angle between the normal and thinned cartilage.

Use of Semiquantitative Assessment
Methods in Research

These classification schemes have been used extensively as
outcomemeasures in research including in largemulticenter
trials such as the OAI and MOST. The following are select

Fig. 2 Whole-organmagnetic resonance imaging score (WORMS) descriptions: 0¼ normal thickness and signal; 1¼ normal thickness but increased signal
on T2-weighted images (not used in this study); 2.0¼ partial-thickness focal defect< 1 cm in greatest width; 2.5¼ full-thickness focal defect< 1cm in
greatest width; 3¼multiple areas of partial-thickness defects< 75% of region or a single partial-thickness defect wider than 1 cm but< 75% of the region;
4¼ diffuse (> 75%of the region) partial-thickness loss; 5¼multiple areas of full-thickness loss< 75%of the regionor a single full-thickness lesionwider than
1 cmbut< 75% of the region; 6¼diffuse (> 75% of the region) full-thickness loss. Boston-Leeds Osteoarthritis Knee Score (BLOKS) descriptions: Size of any
cartilage loss (including partial- and full-thickness loss) as a percentage of surface area as related to the size of each individual region: 0: none; 1:< 10% of
region of cartilage surface area; 2: 10 to 75% of region of cartilage surface area; 3:> 75% of region of cartilage surface area; and percentage full-thickness
cartilage loss of the region:0: none; 1:< 10%of regionofcartilage surfacearea; 2: 10 to75%of regionofcartilage surfacearea; 3:> 75%of regionofcartilage
surface area. Reproduced with permission from Lynch et al.36
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examples of studies of OA risk factors using semiquantitative
assessment.

Osteoarthritis and Physical Activity

The impact of physical activity on OA remains a controver-
sial topic. Although some studies found exercise to be
beneficial,40,41 studies of patients from the OAI contra-
dicted these findings. In particular, these studies of OAI
patients reported that individuals who have risk factors for
OA may suffer cartilage degeneration with high-intensity
physical activity.29,42,43 Even in asymptomatic individuals
enrolled in the OAI, cartilage lesions were more common
and more severe in the highly active subjects compared
with the less active subjects.29,44 In patients who have knee
abnormalities at baseline, walking>10,000 steps per day
was associated with higher cartilage defect scores.45 Physi-
cal activity involving frequent knee bending was also
implicated in a higher prevalence of knee cartilage lesions
and increased the progression of these lesions, particularly
in the patellofemoral compartment.33

Obesity

In obese adults, knee cartilage defects are associated with
physical disability.46 In the OAI cohort, obesity was associat-
ed with a higher prevalence and severity of knee cartilage
lesions as well as with increased cartilage lesion progression
over 3 years.32,47 High body mass index was also associated
with rapid tibiofemoral cartilage loss in patients enrolled in
MOSTwho had or were at risk for OA.48Weight lossmay help
prevent development/progression of lesions and improve
quality of life.49

Injuries

In the OAI cohort, individuals with anterior cruciate ligament
(ACL) abnormalities had a greater prevalence of cartilage
lesions that were also more severe compared with individu-
als with a normal ACL.30Meniscal tears were also found to be
associated with poor tibiofemoral cartilage scores, even in
patients without OA.50 Meniscal root tears are particularly
implicated.51,52 The presence of meniscal extrusion is also
associated with the prevalence and severity of cartilage
damage.53,54

Alignment

Knee malalignment in either the valgus or varus direction
affects the distribution of the load across the joint.55 A large
study examined 5,053 knees from theMOST and 5,953 knees
from the OAI cohort using either WORMS or BLOKS.56 This
study found valgus malalignment, particularly>3degrees,
to be associated with an increased risk of cartilage defect
progression in the lateral tibiofemoral compartment. In the
MOST cohort, varus malalignment has, in contrast, been
associated with incident cartilage damage in the medial
compartment.57

Compositional MRI Techniques for
Assessment of Cartilage

Primarily used in research, these techniques allow detection
of the earliest changes of cartilage degeneration in the ECM,
well before themorphological cartilage defects are apparent.
Thus, compositional imaging sequences have the potential to
serve as quantitative imaging biomarkers of OA.

Higher field strength magnets (3 T and 7 T) are particu-
larly useful for compositional imaging, evenmore so than for
clinical imaging of cartilage. These MR units afford higher
SNRwith resultant greater spatial resolution and shorterMRI
acquisition times.58 Additionally, many biologically relevant
nuclei in addition to 1H, such as sodium and phosphorous,
occur in relatively low concentrations and warrant high field
strength magnets to allow signal acquisition. Among numer-
ous challenges, impediments to routine use of higher field
strength MRI include increasing inhomogeneity, changes in
relaxation times,59 increased sensitivity to susceptibility
effects (decreased T2�),60 and increase in chemical shift
artifact in the frequency-encode direction.61

T2 Mapping and T2
� Mapping

T2 mapping was obtained as part of the knee MRI acquisition
protocol in the OAI and was the most widely studied of all
compositional imaging techniques.62 T2 measurements re-
flect dephasing in the transverse plane after application of a
radiofrequency (RF) pulse. These measurements were found
to be associated with cartilage water content and reflect an
indirect measure of the ECM collagen content.63 Laminar
analysis of cartilage found these measurements to be higher
in the superficial layers of cartilage than in the deep layers.64

Higher T2 values were shown to predict the development of
cartilage lesions.65 At our institutions, a few select surgeons
request T2 mapping as part of the preoperative MRI to
identify problem areas in the cartilage before performing
arthroscopy (►Fig. 3). T2 mapping can discriminate between
repaired knee cartilage and adjacent healthy cartilage,66–68

and itmay be particularly helpful in assessing thematuration
of reparative cartilage.69

T2� mapping measures transverse-plane dephasing using
multiecho GRE techniques. These sequences have a shorter
acquisition time but are also more vulnerable to local field
inhomogeneity.70,71 Both T2 and T2� are affected by themagic
angle effect; that is, the values increase as the angle between
collagen fibers and B0 approaches 55 degrees.

T1ρ Mapping

T1ρ imaging ismorechallenging toacquirethanT2mappingand
therefore only performed at a few select academic institutions.
The imaging is difficult to acquire due to B0 and B1 inhomoge-
neity, specialized RF pulse sequence requirements, and long
acquisition times that may result in high specific absorption
rates (SARs). The SNR gain at 7 T has been used, however, to
show the feasibility of acquiring high-resolution T1ρ images
(0.2mm2 in-plane resolution) in reasonable acquisition times
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(<30minutes) and within SAR constraints.72 T1ρ assesses the
spin-lattice (T1) relaxation in the rotating frame73 and is
thought to reflect the proteoglycan content of the ECM.74 T1ρ
values are higher in patients with OA compared with healthy
subjects.75 T1ρ was also shown to predict morphological
chondral wear.76

Ultrashort Echo Time and Zero Echo Time
Imaging

Like cortical bone, tendons, and menisci, the deep calcified
part of cartilage contains a high fraction of components with
“ultrashort” transverse relaxation times. This essentially
equates to a post-RF pulse signal decay rate that is too rapid
to allow signal acquisition.77 Ultrashort echo time (UTE) and
zero echo time use specialized acquisition and reconstruc-
tion techniques to capture these ultrashort components
before signal decay. Although the application of techniques
for imaging of cartilage is not common, UTE was shown to
delineate the calcified deepest cartilage layer78 and used to
evaluate the integrity of this layer in osteochondral allog-
rafts.79 UTE also enables T2 and T2�mapping of tissues with a
high fraction of ultrashort components.80

Delayed Gadolinium-Enhanced MRI of
Cartilage

The dGEMRIC MRI is performed after intravenous injection
of a gadolinium-based contrast with subsequent joint exer-
cise and substantial time delay to allow diffusion of the
contrast into the joint. Gadopentetate dimeglumine (Gd-
DTPA2�), the MRI contrast, is an anion and repelled by the
negatively charged GAGs, allowing this technique to map
GAG content within the cartilage. Damaged cartilage with
low GAG content will accumulate more Gd-DTPA2� and
therefore have a shorter T1 relaxation time. This technique
was used in research to study a variety of topics including

cartilage repair tissue,81,82 effects of tibial osteotomy on
cartilage,83 inflammatory arthritis,84 and the effects of
chronic joint unloading.85 The need for intravenous contrast
is the main drawback of dGEMRIC; however, it does allow an
indirect MR arthrogram to be obtained during the delay
between injection and acquisition of dGEMRIC T1 imaging.
This may particularly be helpful in the morphological evalu-
ation of the acetabular or glenoid labrum.

Sodium (23Na) Imaging

In contrast to Gd-DTPA2�, sodium (23Naþ) is a naturally occur-
ring cation (albeit in very low concentrations) that is attracted
to and counteracts the negatively charged GAGs in the cartilage
ECM. The distribution of 23Naþ can hence also be used to map
thecartilageGAGcontent,withcartilagedegeneration resulting
in a lower concentration of 23Naþ ions.86 Unsurprisingly, 23Na
imaging correlates well with dGEMRIC.87 The low concentra-
tions of 23Naþ in cartilage, however, make it difficult to elicit
signal during MRI, resulting in noisy images and long acquisi-
tiontimes.TheSNRgainat7-TMRI isparticularlyuseful for 23Na
imaging.88 Because the Larmor frequency of 23Naþ differs
from 1H, specialized transmit-receive coils are also required
to perform sodium imaging.89 As with T2 mapping, sodium
imaging can discriminate between cartilage repair tissue and
healthy cartilage, with lower sodium signal intensity in repair
tissue comparedwith healthy cartilage reflecting a diminished
GAG content90,91 (►Fig. 4).

Diffusion Tensor Imaging

The cartilage ultrastructure consists of a highly organized
network of collagen that results in anisotropic diffusion of
water. In cartilage, DTI can assess both proteoglycan content
through mean apparent diffusion coefficient (ADC) and
collagen microarchitecture through fractional anisotropy
(FA). Both mean ADC and FA values were found to be able

Fig. 3 T2 mapping was performed as part of the clinical preoperative MRI protocol per the request of the referring orthopaedic surgeon.
(a) Sagittal T2 color map is shown with the scale provided on the left; red represents highest T2 measurements; dark blue reflects the lowest
T2 values. Focal high T2 values are seen within the central tibiotalar cartilage (yellow arrow) and with the subchondral talar dome (red arrow).
(b) Sagittal fat-suppressed proton-density images in the same patient demonstrate that these findings correspond to full-thickness tibiotalar
cartilage loss and subchondral bone marrow edema, respectively.
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to discriminate cartilage in OA patients from healthy carti-
lage, with FA having higher specificity.92 DTI was found to
have high accuracy for detecting cartilage damage as well as
for grading cartilage damage.93

GAG Chemical Exchange Saturation Transfer
Imaging

Water exists in two states within cartilage, either bound to
macromolecules or in the free water state. Water protons
bound tomacromolecules have unique RF frequency that can
be saturated using off-resonance RF pulses. The boundwater
pool then interacts with the free water pool resulting in
partial saturation of the free water pool. This effect can be
measured to estimate local macromolecule content.

With gagCEST, off-resonance RF saturation pulses are
designed specifically to saturate exchangeable protons resid-
ing on the hydroxyl groups of cartilage GAGs (►Fig. 5). This
technique correlates well with 23Naþ imaging, and like 23Naþ

imaging, it is optimally performed at ultrahigh field strength
(7 T) magnets.94

Conclusion

OA is the most prevalent joint disease in the United States
with a tremendous socioeconomic burden. With efforts to
develop a DMOAD for OA proving unsuccessful to date, it is
clearly evident that imaging beyond radiography is needed
for both clinical diagnoses of OA and for use as an outcome
measure in OA research. MRI provides an unparalleled

Fig. 5 Representative T1rho maps of cartilage in the (a) lateral and (b) medial compartments. T1rho maps of menisci in the (c, d) lateral and
(e, f) medial compartments, respectively, obtained from a doubtful/minimal osteoarthritis patient. The color bars on the right show the T1rho
values ranges, respectively. The different bar scale ranges can display the respective T1rho values distribution of cartilage and meniscus more
effectively. Reproduced with permission from Wang et al.95

Fig. 4 Axial T2-weighted 7-T MR image (left panel) of the left knee, demonstrating a displaced osteochondral fragment reattachment
(arrowhead) at the medial facet of the patella. Synovial fluid is seen within a full-thickness fissure (arrow). On the conventional 23Na map (middle
panel), hyperintense signal is seen from synovial fluid within the fissure (arrow). On the 23Na-IR map (right panel), there is suppression of signal
from synovial fluid within the fissure. The calibration phantoms containing 300mM, 250mM, 200mM, and 150mM are seen at the anterior
aspect of the knee. The sodium images represent concentration maps with colored bars indicating range of [Naþ] in mM (red¼ 600mM;
blue¼ 0mM). Reproduced with permission from Chang et al.91
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assessment of articular cartilage and has aptly been incorpo-
rated into the major clinical studies of OA including the OAI
and theMOST. For the purpose of quantifying data from such
trials, MRI-based semiquantitative grading systems for OA
have been developed. The most widely used of these classi-
fication schemes include the WORMS and the BLOKS, with
the MOAKS representing a hybrid of both these systems. In
addition to the morphological evaluation, advanced MRI
techniques have been developed to assess the biochemical
composition of cartilage. These include relaxometry meas-
urements (T2, T2�, and T1ρ mapping), sodium imaging,
dGEMRIC, gagCEST, and DTI. These techniques have the
potential to serve both as imaging biomarkers for OA and
as quantitative, reproducible, and objective end points for OA
research.
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