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Interventional oncology (IO) has seen remarkable progress
over the last two decades to now offer a variety of locore-
gional cancer treatments. The minimally invasive nature of
IO was the main driver for the specialty’s emergence and
growth, particularly as an alternative to traditional surgical
and systemic treatments. With the degree of image resolu-
tion offered by current clinical imaging technologies, the
efficacy of IO therapies is now well established at the tissue
or organ level.

Recent advancements in immunooncology research have
brought a new “magnifying glass” to IO, namely, one focusing
on the immune microenvironment. The effect of IO thera-
peutics is now investigated at the cellular andmolecular level
with a focus on the immune system. A unique feature of IO
therapy is particularly pertinent in these investigations: IO
achieves in situ destruction, during which tumor-specific
neoantigens are released and potentially inducing the
so-called abscopal effect or in vivo antitumor vaccination.1,2

In addition, the spontaneous remission of distant malignant
disease after focal thermal ablation has been reported occa-
sionally, but the exact mechanism remains elusive.3–6

Current tumor ablation techniques rely on extreme tem-
peratures to induce irreversible cellular injury and result in
tissue coagulative necrosis. The commonly used techniques
include radiofrequency ablation (RFA), microwave ablation
(MWA), and cryoablation, while the newer techniques such
as laser and high intensity focused ultrasound (HIFU) have
demonstrated promising results.While not based on thermal
energy, irreversible electroporation (IRE) is also employed
along with the aforementioned thermal ablation methods.

The aimof this article is to provide a reviewon the immune
microenvironment in relation to current image-guided abla-
tion techniques and to discuss current and upcomingdevelop-
ments of novel IO strategies to take advantage of antitumor
immunity.

Cancer-Immunity Cycle

Antitumor immunity involves a series of events referred to as
the cancer-immunity cycle7 (►Fig. 1). Oncogenic neoantigens
expressed by tumor cells are processed by antigen-presenting
cells (APCs) to prime and activate antigen-specific CD8þ
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Abstract Current tumor thermal ablation techniques rely on extreme temperatures to induce
irreversible cellular injury and coagulative tissue necrosis. Ablation-induced cellular
injury or death releases cancer neoantigens and activates the cancer-immunity cycle,
potentially generating tumor-specific immune effectors. However, multiple negative
regulatory modulators exist at each step of the cycle, mitigating meaningful and
therapeutic anticancer effect provided by the immune system. Recent studies have
focused on the introduction and testing of adjuvant immunotherapy combined with
ablation to synergistically shift the equilibrium out of inhibitory immune modulation.
This article reviews the immune microenvironment in relation to image-guided
ablation techniques and discusses current and upcoming novel strategies to take
advantage of antitumor immunity.
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cytotoxic T-lymphocytes (CTLs) at tumor-draining lymph
nodes (TDLNs). These activated effector cells travel via system-
ic circulation and carry out their tumor-killing functionwhen
they encounter their specific antigen expressed within the
tumor beds.

Despite successful initial priming of CTLs,8,9 subsequent
clonal expansion leading to an effector population rarely
comes to completion.7 There are multiple negative regula-
tory mechanisms at each step of the cancer immunity cycle,
preventing meaningful and therapeutic anticancer effects
provided solely by the immune system. This can explain
anecdotal reports of effective immunotherapy throughout
the history of immuno-oncology including original obser-
vations by Fehleisen, Busch, and Coley.3–6,10–12 Additionally,
the tumor cell population can escape the immune system’s
immunoediting, where tumor cells evade immune
surveillance, by promoting the selective survival of the
immune-resistant antigen cohort.13,14,22 The goal of cancer
immunotherapy is to modulate negative regulatory mech-
anisms and induce an effective cancer elimination process
without creating an overt autoimmune reaction or acceler-
ating the immunoediting process. Recent successes in sys-
temic immune checkpoint inhibitors such as anti-PD1
(programmed cell death protein 1), anti-PDL1 (programmed
death ligand 1), and anti-CTLA4 (cytotoxic T-lymphocyte
associated protein 4) therapies are examples of these
efforts.

Cellular Injury and Immunogenicity of
Thermal Ablative Therapy

Currently available ablative therapies, with the exception of
IRE, rely on heat-based cellular destruction methods. RFA,
MWA, HIFU, and laser ablation induce hyperthermic cellular
damage,while cryoablation induces cellular injuryby freezing.
Regardless of the technique, thermal ablation can be divided
into three zones: central necrotic, peripheral transitional, and
normal tissue15–17 (►Fig. 1). The central area is characterized
by direct and immediate cellular injury achieved by lethal
temperatures, that is, greater than 60°C in hyperthermic
methods andbelow�20°C in cryoablation.15,16Theperipheral
or transitional zone is a band-like area of thermal conduction
between the central necrotic zone and surrounding normal
tissue, characterized by a steep temperature gradient toward
normal tissue temperature. Within the peripheral zone,
different degrees of cellular injury will result in a mixture of
necrotic,delayed/indirect, and reversible injury. This is alsothe
area where most of the immune and inflammatory cellular
infiltrates are found.15,18Delayedor indirect cellular injurycan
manifest via many different mechanisms including apoptosis,
ischemia–reperfusion, and innate and adaptive immune
response.16

Cellular necrosis immediately releases immunogenic intra-
cellular contents (such as DNA, RNA, and heat shock proteins
[HSPs]) directly into the extracellular matrix. Unlike necrosis,

Fig. 1 Postablation immune microenvironment: cancer-immunity cycle. The area of thermal ablation can be divided into three different zones:
central necrotic, peripheral transitional, and normal surrounding tissues. Cancer neoantigens released from cellular injury or death will activate
the cancer-immunity cycle, generating tumor-specific immune effectors. These activated effector cells travel via systemic circulation and carry
out their tumor-killing function when they encounter their specific antigen expressed within the tumor beds. However, there are multiple
negative regulatory mechanisms at each step of the cancer-immunity cycle, preventing meaningful and therapeutic anticancer effect provided
solely by the immune system. Multiple immunomodulatory strategies have been combined with image-guided locoregional ablation to
synergistically shift the equilibrium out of inhibitory immune modulation (red boxes).
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apoptosis is a much more intrinsic process of cell death and is
less immunogenic or inflammatory.19 The ratio between
postablation apoptosis and necrosis may be a key modulator
to achieving a maximally immunogenic microenvironment.15

Some authors also suggest that different immunogenic quali-
ties can be achieved by modifying ablation protocols or
parameters.18,20

Postablation Inflammation: Immunogenic
versus Prooncogenic

All image-guidedablative therapies create insitu tissuedamage
which inducesnotonlyan immunogenic responsebutalso local
wound healing and a systemic inflammatory response. Post-
ablation inflammation iswell established clinically,with symp-
tomatic treatment generally being applied in a conservative
manner. At the molecular level, tissue remodeling upregulates
and releases many prooncogenic growth factors and cyto-
kines.21 There is experimental and clinical evidence of worse
outcomes of ablation therapy with accelerated local or off-
target tumorprogression,18,22–27suggesting thatapostablation
microenvironment was potentially prooncogenic. In animal
HCC model, RFA was associated with increased tumor burden
and decreased survival compared with partial hepatectomy or
sham controls.27 Furthermore, this prooncogenic effect of RFA
was attenuated by postablation systemic inhibition of c-met
signaling.27 In another animal study with breast cancer, RFA of
the normal liver was associated with the growth of a distant
tumor,which couldalsobesuppressedbyc-met inhibition.22 In
a separate study, the same group also reported a tumorigenic
effect observed with MWA which was attenuated by high-
power, faster MWA protocol.18

Several efforts have been made to unfold the enigma of
postablation inflammation by characterizing peripheral blood
mononuclear cell (PBMC) samples. In a studywith193patients
with CRLM (colorectal liver metastases) treated with RFA,
elevated lymphocyte–monocyte ratio (LMR) was identified as
a significant negative predictor for recurrence andmortality.28

Decreased post-RFA neutrophil–lymphocyte ratio (NLR) was
associated with improved disease-free survival in 178 small
hepatocellular carcinoma (HCC) patients,29 while increased
postablation NLR was associated with local recurrence and
metastatic disease in patients with 185 renal cell carcinoma
(RCC) patients treated with RFA.30 Additionally, an increase in
the number of interferon gamma (IFN-γ) producing cytotoxic
natural killer (NK) cellswasassociatedwith longerdisease-free
survival after RFA in 37 subjects with HCC.31

Methods of Ablation and Immune
Stimulation

As RFA is the oldest technique, there are many studies in the
literature regarding the postablation immune reaction of this
technique. Within hours or days after RFA, there is a local and
systemic release of proinflammatory cytokines, including IL
(interleukin)-1β, IL-1α, IL-6, IL-8, IL-18, and TNFα (tumor
necrosis factor α).21,32–35 Intriguingly, anti-inflammatory
cytokines such as IL-10 and transforming growth factor-beta

are also shown to be released and upregulated after RFA.35,36

Some studies have reported contradictory findings regarding
the regulationof specific cytokines, reflecting the complexand
dynamicnature of theprocess.33,36,37Apart fromcytokines, an
important immune modulator found in the post-RFA micro-
environment is theextracellularheat shockprotein (HSP).38–41

HSP belongs to a groupof endogenousmolecules and is known
as a “danger signal” released by necrotic cells. Extracellular
HSP70 is a chaperone molecule facilitating the antigen pre-
sentation of APCs to T-cells42,43 and is upregulated in the
tumormicroenvironment.38–41 In a studywith 22 posthepatic
RFA subjects, serum HSP70 level was significantly elevated
within 24hours and was positively associated with survival
benefits and time to disease progression.44 Although it was
first discovered in a post-RFA setting, HSP upregulation
and release have also been identified in other ablativemodali-
ties.45–48 Additional danger signal molecules such as high-
morbidity group box-1 (HMGB-1) are under investigation
regarding their role in postablation immune reaction.49,50

Cryoablation has been shown to induce a more robust
systemic immune reaction compared with hyperthermic
ablative methods in multiple experimental and clinical
studies.21,32,51,52 Furthermore, postablation systemic or
remote inflammatory organ injuries, the so-called cryo-
shock, have been reported after large-volume cryoabla-
tion.53–56 The hyper-immunogenicity of cryoablation is
hypothesized to be due to the relative preservation of tumor
neoantigens during freezing cell injury compared with
hyperthermal ablation techniques. In cryoablation, osmotic
changes across intra- and extracellular compartments
induce cellular injury without affecting the potential intra-
cellular tumor antigens including DNA, RNA, or proteins.
Conversely, hyperthermal ablation denatures and degrades
proteins, erasing part of the critical tumor immunogenic
footprints.

MWA appears to induce the least magnitude of immune or
inflammatory reaction. In the animal liver, a significantly lower
level of inflammatory cytokines (IL-1β and IL-6) and HSP70 in
peripheral blood samples was observed after MWA compared
withRFAor cryoablation.32,48 In another animal study, the level
of proinflammatory cytokines afterMWAwas similar to that of
the surgical resection group that did not have any ablation.23

Thus, eventually, the low inflammatory characteristic of MWA
enables it to achieve a successful larger volumehepatic ablation
without collateral inflammatory remote organ injuries.48,57

Nevertheless, despite these reproducible observations, the
exact mechanism for minimal immune or inflammatory
response after MWA remains unknown.

HIFU destroys cells mechanically by acoustic cavitation
and histotripsy.58–60 Acoustic cavitation results from the
repeated growth and collapse of micro gas bubbles within
the tissue under the influence of high-pressure soundwaves.
Mechanical fractionation combined with a boiling process
enables histotripsy which eventually generates an emulsi-
fied acellular homogenate surrounded by very thin, less than
1mm, margins, with minimal fibrosis.58–60 This liquefied
lesion is absorbed rapidly by the surrounding tissue and
easily infiltrated by immune cells. In a clinical study with 48
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breast cancer subjects, HIFU-treated lesions were removed
by mastectomy and demonstrated markedly increased
immune cell infiltrates compared with surgical specimens
not treated with HIFU.61

Laser ablation has had limited use in tumors and little data
are available on its immune stimulation. Similar to other
hyperthermal techniques, apostablative increaseofproinflam-
matory cytokines in peripheral blood has been observed.62 In
preclinical animal experiments, tumor-specific immune cell
generation has also been observed after laser ablation.63,64

IRE is the newest ablation technique and does not incor-
porate thermal energy. IRE selectively disrupts the lipid
bilayer cellular membrane via the electrical induction of
permanent nanopores. Preliminary microscopic studies in
animal samples treated with IRE demonstrated minimal
damage in extracellular structures aswell asminimalfibrotic
or inflammatory margins.65 In an osteosarcoma animal
model, IRE generated increased peripheral T-lymphocytes
compared with surgical resection.66 In a recent study
employing an animal pancreatic cancer model, IRE exhibited
a twofold increase in CD3þ T cell infiltrates compared with
cryoablation.67

In summary, non-hyperthermal ablationmodalities such as
cryoablation, IRE, and HIFU appear to generate a more robust
immune response compared with hyperthermal modalities,
possibly to the greatest degreewith IRE. Regardless of ablative
techniques, it is clear that proinflammatory cytokines and the
danger molecule signaling pathway are activated in the
immediate postablative period. The remaining and important
question is if this translates into a therapeutically immuno-
genic or prooncogenic environment and which factors modu-
late the balance between them.

Investigating the postablation immune response is a chal-
lenging process.Withvarying ablation devices, heterogeneous
parameters and protocols at each center, and various types of
tumors treated, it is difficult to perform a standardizedmulti-
center trial or to compare studies across centers or countries.
Investigations are further challenged by the varying baseline
individual immune function at the time of treatment. No
optimal time point for sampling or quantifying the immune
response has been determined. Finally, investigations may
requireadditional invasivesamplingof thetreatedarea.Hence,
to date, most investigators have chosen to look at the systemic
immune response based on PBMCs as discussed earlier,28–31

and immunopositron emission tomography has been investi-
gated for the possible noninvasive monitoring of immune
response.68,69

Combination Therapy: Ablation and
Immunotherapy

It is established that a tumor-specific immune-stimulatory
effect is generated after image-guided locoregional ablation.
However, given that this rarely translates into robust effector
clonal expansion or tumor killing, many recent studies have
focused on the introduction and testing of adjuvant immuno-
therapy combined with ablation to synergistically shift the
equilibrium out of inhibitory immune modulation (►Fig. 1).

Ablation combinedwith immune checkpoint inhibitors has
demonstrated a potential positive synergistic effect on tumors
elsewhere in thebody inmultiple studies (►Table 1). In animal
studies, the combination of anti-CTLA-4 and cryoablation70 or
anti-PD1 and RFA71 slowed tumor growth and increased
effector T cell infiltration of distant tumors. In a pilot clinical
study in 18 metastatic breast cancer patients, cryoablation
combinedwithanti-CTLA-4 (ipilimumab) revealeda sustained
increaseof IFN-γ, effector T cells, and the ratio ofeffector T cells
to regulatory T cells (Treg) in peripheral blood samples.72 In
another pilot study,73 12 Barcelona clinic liver cancer stage C
patients with metastatic HCC who failed sorafenib treatment
underwent percutaneous RFA and chemoablation therapy
combined with anti-CTLA-4 (tremelimumab). The investiga-
tors of that study reported that the patients had 7.4 months
median time to progression and 10.1 months median overall
survival without any severe treatment-related toxicity. The
patients alsohad favorableobjective treatment responseswith
increased active CD8þ CTL infiltration in thedistant untreated
lesion. Additionally, case reports have described the successful
treatment of colorectal lungmetastasis usingMWA/anti-PD-1
(pembrolizumab)74 andmetastatic clear cell RCC using cryoa-
blation/anti-PD-1 (nivolumab) combinations.75

Positive modulation of the antigen-presentation process
by dendritic cells (DCs) has been combined with ablation,
showing promising results. In animal studies combining
intratumoral injection of activated DC with RFA76 or cryoa-
blation,77 significant growth inhibition on distal untreated
tumors and increased effector immune cell infiltrates were
demonstrated. Similarly, in animal studies combining RFA or
cryoablation with intratumoral stimulation of native DC by
using toll-like receptor (TLR) agonists,78–80 OK-432,81 gran-
ulocyte-macrophage colony-stimulating factor (GM-CSF),82

krestin polysaccharide,83 and BCG,84 a favorable response in
untreated tumor burden was demonstrated. Some of these
preclinical models were successfully reproduced in a few
clinical studies. Thakur et al85 and Si et al86 confirmed robust
tumor-specific CTL function in untreated tumors in patients
with metastatic RCC and prostate cancer when treated with
cryoablation and GM-CSF injection. Niu et al retrospectively
reviewed 106 patients with metastatic pancreatic cancer87

and demonstrated significantly improved median survival
when cryoablation was combined with adoptive transfer of
GM-CSF stimulated DCs compared with cryoablation only,
immunotherapy only, or chemotherapy only (13, 7, 5, and 3.5
months, respectively). The authors applied the same strategy
in 45 patients with metastatic HCC,88 revealing significantly
improved overall survival with cryo-immunotherapy com-
pared with cryoablation only (32 vs. 17.5 months).88

NK cells are cytotoxic effector lymphocytes within the
innate immune system. Theyplayan important role in cancer
immune surveillance and are able to induce rapid immune
responses against malignant cells in an antigen-independent
manner.89 Adoptive transfer of allogenic NK cells has been
combined with ablative therapies in preclinical and clinical
studies, demonstrating potential efficacy and safety. In a
pilot clinical study of cryoablation and NK cell therapy in 48
patients with treatment-resistant metastatic breast cancer,
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increased immune effector T cells and Th-1-type cytokines in
the peripheral blood was demonstrated in the combinatory
treatment group (n¼16), although the increment in pro-
gression-free survival was not statistically significant
compared with the cryoablation-only group (n¼16).90 Of
note, this study also included a triple-combination group
(n¼16, cryoablation, allogenic NK cells, trastuzumab)
demonstrating a significant increase in immune response
and progression-free survival compared with the aforemen-
tioned two groups. Two prospective clinical studies combin-
ing cryoablation with allogenic NK cell immunotherapy of
metastatic RCC (n¼60)91 and non-small cell lung cancer
(n¼60)92 also revealed enhanced effector immune cell
quantity as well as Th-1–type cytokines in the peripheral
blood. However, these studies did not report any clinical
outcomes regarding progression-free survival or regression
of distant untreated tumor. Lastly, one study using a combi-
nation of IRE and allogenic NK cell therapy for primary liver
cancer patients demonstrated survival benefits and
increased immune response compared with IRE therapy
only.93

Future Directions

As of June 2019, there are 22 ongoing or planned clinical
trials for various combinatory regimens of locoregional
ablative therapy and immunotherapy registered in the clin-
icaltrials.gov database (►Table 2). Additionally, there are also
trials investigating the efficacy and safety of immunotherapy
combined with other locoregional IO therapies such as
chemoembolization or radioembolization. In addition to
these preliminary outcome-based studies, there are many
important questions to be answered.94Most importantly, the
timing, sequence, number, and type of combinatory therapy
should be determined to optimize the synergistic efficacy.

There is a great potential in the combinationof locoregional
therapy and immunotherapy. The synergy between interven-
tional radiology and immunooncology with their different
philosophies and approaches will enhance our understanding
of cancer biology in general. Many innovative, minimally
invasive locoregional IO therapies have been developed, dem-
onstrating similar safety and efficacy profiles between them
albeit the great heterogeneity in techniques and application.

Table 2 Locoregional ablative therapy combined with immunotherapy: ongoing and planned registered trials as of June 2019

Trial no. Ablative
modality

Immunotherapy Disease (no. of subjects) Phase Expected study
completion
dates (mm/yyyy)

NCT02851784 MWA CIK cells Hepatocellular carcinoma (50) II, III 12/2017

NCT03101475 SBRT or RFA Durvalumab (anti-PDL1)þ
Tremelimumab (anti-CTLA4)

Colorectal liver metastasis (70) II 01/2023

NCT03695835 Cryoablation
or RFA

Anti-PD1þ anti-CTLA4þ
GM-CSF

Prostate adenocarcinoma (18) Observational 12/2025

NCT03864211 MWA or RFA Toriplimab (anti-PD1) Hepatocellular carcinoma (120) I, II 03/2021

NCT03753659 MWA or RFA Pembrolizumab (anit-PD1) Hepatocellular carcinoma (30) II 09/2022

NCT02678013 RFA CIK cells Hepatocellular carcinoma (210) III 01/2022

NCT02849366 Cryoablation NK cells Soft-tissue sarcoma (30) I, II 07/2019

NCT02849379 Cryoablation NK cells Tongue cancer (30) I, II 07/2019

NCT02849353 Cryoablation NK cells Ovarian cancer (30) I, II 07/2019

NCT02849340 Cryoablation NK cells Cervical cancer (30) I, II 07/2019

NCT02849314 Cryoablation NK cells Laryngeal cancer (30) I, II 07/2019

NCT02849327 Cryoablation NK cells Hepatic metastatic disease (30) I, II 07/2019

NCT02844335 Cryoablation NK cells Breast cancer (30) I, II 07/2019

NCT02843607 Cryoablation NK cells Renal cell carcinoma (30) I, II 07/2019

NCT02843815 Cryoablation NK cells Non-small cell lung cancer (30) I, II 07/2019

NCT02849015 Cryoablation NK cells Primary liver tumor (10) I, II 07/2018

NCT01853618 Cryoablation
or RFA or TACE

Tremelimumab
(anti-CTLA4)

Primary liver tumor (61) I, II 12/2020

NCT03008343 IRE NK cells Primary liver tumor (20) I, II 12/2019

NCT00891475 RFA Sunitinib (tyrosine
kinase inhibitor) or IFN-α

Renal cell carcinoma (114) I, II 01/2011

NCT03949153 Cryoablation Ipilimumab (anti-CTLA4) Cutaneous melanoma (15) I, II 12/2021

NCT03939975 RFA or MWA Pembrolizumab or nivolumab
or JS001 (anti-PD1)

Hepatocellular carcinoma (50) II 05/2023

NCT03237572 HIFU Pembrolizumab (anti-PD1) Breast cancer (15) I 11/2021

Abbreviations: CIK, cytokine-induced killer; HIFU, high intensity focused ultrasound; IFN, interferon; IRE, irreversible electroporation; MWA,
microwave ablation; NK, natural killer; RFA, radiofrequency ablation; TACE, transarterial chemoembolization.
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Further understanding of the tumor immune microenviron-
ment may also shed light on mechanisms to differentiate and
tailor IO therapies toward more personalized cancer therapy.

Conclusion

Locoregional tumor ablative techniques induce tumor-derived
immunogenic activation at local and systemic levels, which
may ultimately translate into beneficial therapeutic effects in
local and remote tumors. To overcome the body’s innate
negative immune modulation in the cancer-immunity cycle
and to optimize the immunogenic response, ablative therapy
has been combined with various immunotherapy regimens,
resulting in promising outcomes, although these findings
remain preliminary. Understanding the tumor microenviron-
ment will help advance our knowledge of existing IO proce-
dures, as well as aid in the development of innovative,
personalized oncologic care.
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