Arch Length and Palatal Rugae: An Adjunct in Gender Discrimination

Sanjay Mittal¹, Pooja Vyas¹, Mandeep Bhullar¹, Divya Singla¹, Isha Aggarwal¹, Rameez Hassan¹

¹Department of Orthodontics and Dentofacial Orthopedics, Bhojia Dental College, Baddi, Himachal Pradesh, India

Address for correspondence Pooja Vyas, E-1 /503, GHS 79, Sandeep Vihar, Sector 20, Panchkula 134116, Haryana, India (e-mail: drpoojavyasvashist@gmail.com).

Introduction

Palatal rugae or plica palatine are the fingerprint of the oral cavity and the arch length varies between males and females. These two parameters constitute an integral part of the anthropometric studies in the realms of dentistry as well as forensic odontology. The aim of this study was to assess whether any relationship existed between the upper arch length and the rugae pattern and whether these two parameters showed any gender differentiation.

Materials and Methods

The sample consisted of upper and lower study models of 60 subjects (30 males and 30 females). Arch lengths were measured using a brass wire and rugae were traced on the dental casts and assessed by applying the Thomas and Kotze classification (1983). The data collected was subjected to statistical analysis.

Results

The results showed that the maxillary and mandibular arch length dimensions were higher in males than in females; however, the differences were found to be statistically insignificant. The assessment of rugae pattern showed that the male subjects had a higher number of rugae. The differences in rugae pattern distribution for male and female subjects were found to be statistically significant.

Conclusion

The palatal rugae pattern and maxillary arch length can be used as an additional method in differentiating gender between human population groups.

Abstract

Introduction

Palatal rugae or plica palatine are the fingerprint of the oral cavity and the arch length varies between males and females. These two parameters constitute an integral part of the anthropometric studies in the realms of dentistry as well as forensic odontology. The aim of this study was to assess whether any relationship existed between the upper arch length and the rugae pattern and whether these two parameters showed any gender differentiation.

Materials and Methods

The sample consisted of upper and lower study models of 60 subjects (30 males and 30 females). Arch lengths were measured using a brass wire and rugae were traced on the dental casts and assessed by applying the Thomas and Kotze classification (1983). The data collected was subjected to statistical analysis.

Results

The results showed that the maxillary and mandibular arch length dimensions were higher in males than in females; however, the differences were found to be statistically insignificant. The assessment of rugae pattern showed that the male subjects had a higher number of rugae. The differences in rugae pattern distribution for male and female subjects were found to be statistically significant.

Conclusion

The palatal rugae pattern and maxillary arch length can be used as an additional method in differentiating gender between human population groups.
The science of anthropometry has been utilized in diverse fields; different studies on dental anthropometry have utilized arch lengths, facial heights, and rugae patterns as individual parameters.

The arch length may be defined as the distance from the distal point of the most posterior tooth on one side of the upper or lower jaw to the same point on the other side usually measured through the points of contact between adjoining teeth. It has been observed that the arch length varies between males and females with the males usually having a greater arch length than females. In orthodontic literature, studies have been undertaken till date to assess the arch length differences in males and females, but studies combining the palatal rugae variations as well as the arch length discrepancies in males and females are very limited. This study was undertaken to see whether gender differences can be determined using these two parameters.

Objectives

The aim of this study was to evaluate the arch lengths and the rugae patterns and whether these two parameters showed any sexual dimorphism.

Materials and Methods

The present cross-sectional study comprised 60 subjects (30 males and 30 females) who presented to the Department of Orthodontics and Dentofacial Orthopedics of Bhojia Dental College and Hospital, Bhud, Baddi (HP) for fixed orthodontic treatment. Informed consent was obtained from all the subjects after explaining to them the nature of the study. The subjects were selected on the basis of the following criteria.

Inclusion Criteria

1. Fully erupted permanent teeth with the exception of the third molars.

Exclusion Criteria

1. History of facial trauma
2. History of previous orthodontic treatment
3. Cleft palate and lip surgeries

The sample was divided into two groups (►Table 1).

Methodology

The maxillary and mandibular dental study models were obtained; the upper arch length and the lower arch length were measured using a (0.25 inch) brass wire. The brass wire was contoured to the original arch shape and placed on the occlusal surfaces over the contact points of the posterior teeth mesial to the first permanent molars and the incisal edges of the anterior teeth till the second pre-molar on the contralateral side of the arch (►Fig. 1).

The same study models were used to analyze the various rugae patterns after delineating them using a sharp graphite pencil. Rugae shapes were categorized on the basis of the classification given by Thomas and Kotze. According to the size, the rugae were classified into (1) primary rugae (≥5 mm), (2) secondary rugae (3–5 mm), and (3) fragmentary rugae (2–3 mm). On the basis of shape, the rugae were classified into (1) curved, (2) wavy, (3) straight, and (4) circular rugae. The number of these rugae were counted and analyzed (►Fig. 2).

Statistical Analysis

The values so obtained were subjected to statistical analysis using SPSS (Statistical Package for Social Sciences) version 15.0 statistical analysis software. The mean and standard deviations were calculated. The differences between males and females for both the parameters were determined and subjected to paired t-test.

Results

The study was done on maxillary and mandibular dental study models of 60 subjects that were divided into two groups: group I (males, n = 30) and group II (females, n = 30). Arch lengths and rugae patterns were evaluated for both the groups.

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (n = 30)</td>
<td>Females (n = 30)</td>
</tr>
</tbody>
</table>

The descriptive statistics and comparative analysis of arch lengths for group I (males) and group II (females) are depicted in ►Table 2. It was found that males had a higher arch length than females, both in the upper and the lower arch. When the means of arch lengths were analyzed by comparing the groups, it was found to be statistically insignificant (p > 0.05).

The descriptive statistics and comparative analysis of different rugae patterns in group I (males) and group II (females) are depicted in ►Table 3. It shows that no significant difference was observed in the rugae characteristics between the right and left side for males and females; hence, they are not being depicted separately. The results show that the females had a higher number of primary rugae than the males but the males showed a higher number of secondary
and fragmentary rugae. The males showed a higher percentage for straight and wavy rugae, whereas the females had a higher percentage of circular rugae pattern. When rugae patterns of both the groups were compared, the results were found to be statistically significant ($p < 0.05$) (~Table 3).

Discussion

Gender determination is one of the important aspects of human identification as it helps in building the biological profile of unidentified human remains. One of the most important methods of assessing gender is anthropometry of the face and intraoral regions. It has been reported that no two palates are alike in their configuration and that the palatal print did not change with time or age. Despite the controversy about the stability of the characteristics of rugae and the extent of differences between ethnic groups and sex, they have been recognized in the field of forensics as a potential source of identification.

The present cross-sectional study was conducted to evaluate differences in the palatal rugae patterns and arch lengths of males and females. The study analyzed the rugae patterns based on shape: curved, wavy, straight, and circular.

Table 2

Descriptive statistics and comparative analysis of arch lengths of males and females

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Parameters</th>
<th>n</th>
<th>Mean (mm)</th>
<th>SD (mm)</th>
<th>SE (m)</th>
<th>Upper bound</th>
<th>Lower bound</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Upper arch length males</td>
<td>30</td>
<td>74.53</td>
<td>4.6</td>
<td>0.81</td>
<td>87</td>
<td>69</td>
<td>0.64</td>
</tr>
<tr>
<td>2</td>
<td>Upper arch length females</td>
<td>30</td>
<td>74.1</td>
<td>4.3</td>
<td>0.79</td>
<td>86</td>
<td>66</td>
<td>0.64</td>
</tr>
<tr>
<td>3</td>
<td>Lower arch length males</td>
<td>30</td>
<td>64.56</td>
<td>5.5</td>
<td>0.99</td>
<td>74</td>
<td>59</td>
<td>0.51</td>
</tr>
<tr>
<td>4</td>
<td>Lower arch length females</td>
<td>30</td>
<td>63.51</td>
<td>5.3</td>
<td>0.95</td>
<td>70</td>
<td>51</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Abbreviations: SD, standard deviation; SE, standard error.

Table 3

Descriptive statistics and comparative analysis of the various rugae patterns in group I (males) and group II (females)

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Rugae patterns</th>
<th>Gender</th>
<th>n</th>
<th>Mean (mm)</th>
<th>Standard deviation</th>
<th>Standard error mean</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary rugae</td>
<td>Males</td>
<td>30</td>
<td>2.1000</td>
<td>1.12495</td>
<td>0.20064</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females</td>
<td>30</td>
<td>2.1034</td>
<td>1.08050</td>
<td>0.20539</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>Secondary rugae</td>
<td>Males</td>
<td>30</td>
<td>1.4667</td>
<td>1.22428</td>
<td>0.22352</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females</td>
<td>30</td>
<td>1.1034</td>
<td>1.14470</td>
<td>0.21257</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>Fragmentary rugae</td>
<td>Males</td>
<td>30</td>
<td>0.8333</td>
<td>1.03152</td>
<td>0.19155</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females</td>
<td>30</td>
<td>0.7241</td>
<td>1.03152</td>
<td>0.19155</td>
<td>0.001</td>
</tr>
<tr>
<td>4</td>
<td>Straight rugae</td>
<td>Males</td>
<td>30</td>
<td>1.1000</td>
<td>1.06188</td>
<td>0.19387</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females</td>
<td>30</td>
<td>0.9310</td>
<td>0.99753</td>
<td>0.18524</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>Wavy rugae</td>
<td>Males</td>
<td>30</td>
<td>0.6000</td>
<td>0.96847</td>
<td>0.17682</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females</td>
<td>30</td>
<td>0.4138</td>
<td>0.82450</td>
<td>0.15311</td>
<td>0.012</td>
</tr>
<tr>
<td>6</td>
<td>Circular rugae</td>
<td>Males</td>
<td>30</td>
<td>0.4333</td>
<td>0.93526</td>
<td>0.17075</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females</td>
<td>30</td>
<td>0.5517</td>
<td>1.08845</td>
<td>0.20212</td>
<td>0.011</td>
</tr>
</tbody>
</table>
lengths in male and female patients reporting to the Department of Orthodontics of Bhojia Dental College and Hospital. The study revealed that arch lengths of the males were greater than those of the females that were in concordance with the findings of Shrestha and Bhattacharj, Barrett et al., Bishara et al., Huang et al., and Kallianpur et al. However, this was not statistically significant. The greater arch lengths in males can be attributed to the large jaw size of the males in comparison to the females.

In this study, the primary rugae were more than the secondary and fragmentary rugae. These results were in accordance with the study conducted by Ahmed and Hamid who found out that primary rugae were more predominant followed by secondary and fragmentary.

The study also concluded that the most predominant shape of the palatal rugae seen in both the groups was curved and wavy followed by straight rugae. These results were in accordance with the studies conducted by Asdullah et al. and Kapali et al. It has been reported by Asdullah et al that curved rugae (32.1%) were most commonly seen followed by the wavy type (28.73%) and straight type (23.98%) in Lucknow, India. Kapali et al had found that the most common shape of rugae was wavy and curved, whereas straight and circular types were the least common in Australian Aborigines and Caucasians ethnic groups. However, few studies had contradictory results. Sumathi et al reported that wavy pattern was the most predominant pattern among Pondicherry population followed by straight, curved, and circular pattern. Paliwal et al. concluded that wavy pattern was predominantly followed by straight and curved in the Madhya Pradesh population, whereas wavy was followed by curved and straight in the Kerala population. Rugae pattern revealed statistically significant differences in males and females. These changes can be attributed to genetic or environmental variation.

The application of palatal rugae in gender determination could be attributed to low utilization cost, simplicity, and reliability. The above-mentioned interpretations are based on a very limited sample size, therefore, further work on larger samples would be a stepping stone in studying these characteristics not only between the races but also within the populations.

Conclusion

There are many studies on rugae pattern and arch length for gender determination as individual parameters, but studies combining them are scanty. This study was done to assess whether these two parameters can be used separately or in combination with each other to determine gender differentiation. It can be safely concluded that the palatal rugae pattern and maxillary arch length can be used as an additional method in differentiating gender between human population groups.

1. The arch length was found to be greater in males than females, though the result was statistically insignificant.
2. The most predominant shape of rugae was curved and wavy followed by straight rugae pattern in both males and females. Circular rugae were the least common pattern observed in both the groups.
3. Primary rugae are more predominant than secondary and fragmentary rugae.
4. Arch length and the palatal rugae pattern in conjunction can be used as a tool in gender determination.

Conflict of Interest
None declared.

References