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Introduction

The connection between Epstein-Barr virus (EBV) and Burkitt’s
lymphoma (BL) was discovered in 1964." Almost contempora-
neously, high anti-EBV antibody levels were found in BL.>3 Since
then, EBV infection has been associated with a wide spectrum of
malignancies that, besides BL, comprehends different types of
lymphomas, nasopharyngeal carcinoma (NPC), breast and brain
cancer, and oral hairy leukoplakia,*~® among others. In addition,
EBV has been implicated in a wide variety of diseases, including
systemic lupus erythematosus (SLE), Sjogren’s syndrome,
multiple sclerosis (MS), myasthenia gravis (MG), rheumatoid
arthritis (RA), autoimmune thyroid disorders, inflammatory
bowel disease, celiac diseases, diabetes, Parkinson’s disease,
myopericarditis, dilated cardiomyopathy, and even death.>~'*
At the same time, anti-EBV antibody level was found to be
higher in BL patients than in control subjects.>'>~'” High level
of anti-EBV immunoglobulin G antibodies were also found
in subjects with NPC,'8-2! with IgG reactivity increasing
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Sequence analyses highlight a massive peptide sharing between immunoreactive
Epstein-Barr virus (EBV) epitopes and human proteins that—when mutated, deficient
or improperly functioning—associate with tumorigenesis, diabetes, lupus, multiple
sclerosis, rheumatoid arthritis, and immunodeficiencies, among others. Peptide
commonality appears to be the molecular platform capable of linking EBV infection
to the vast EBV-associated diseasome via cross-reactivity and questions the hypothesis
of the “negative selection” of self-reactive lymphocytes. Of utmost importance, this
study warns that using entire antigens in anti-EBV immunotherapies can associate with
autoimmune manifestations and further supports the concept of peptide uniqueness
for designing safe and effective anti-EBV immunotherapies.

significantly with tumor stage?'; Hodgkin and non-Hodgkin
lymphomas?2-2*; precancerous gastric lesions?>; MS%6-2%;
RA3%32: MG*334; and SLE,?*213* among others. In general,
high antibody titers to EBV appeared to be related to a worse
prognosis, a phenomenon that has been described by Coutin-
ho’s laboratory>? as “the advantage of being low-respondents.”
Currently, measurement of increased anti-EBV antibody titers
is utilized to predict, to detect, and to monitor the progression
of EBV-related cancers and progression of the various EBV-
induced diseases.36-38

Today, in front of such well known clinical context, the
molecular mechanism(s) by which anti-EBV immune
responses relate to the EBV diseasome, from lymphomas to
Parkinson’s disease, are still obscure. From a logical point of
view, a central question remains unanswered and perhaps, as
far as we know, has never been clearly posed: why the
powerful anti-EBV immune responses herald cancers, autoim-
mune diseases, and death instead of eradicating the viral
infection and re-establishing a healthy status?
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In the clinical frame exposed above and on the basis of
previous scientific reports3®~#2 that have detailed a high level of
peptide sharing between EBV and human proteins involved in
crucial functions, this study investigates whether the immune
responses that accompany active EBV infection have the poten-
tial to cross-react with and damage human proteins that, when
altered, can lead to various cancer and autoimmune diseases.
That is, the thesis is explored according to which the anti-EBV
immune responses that should be a “protective defense” from
EBV infection actually cross-react with human proteins, in this
way setting up an anti-human protein assault with catastrophic
pathologic sequelae in the body. Specifically, the present study
used the pentapeptide as an antigenic and immunogenic
unit, 48 and analyzed 3,197 experimentally validated immu-
noreactive EBV-derived epitopes for pentapeptide matches
with the human proteome. Data are reported on a vast peptide
sharing between EBV epitopes and proteins involved in tumor-
igenesis, autoimmune disorders, diabetes, and death, among
others. The data suggest that cross-reactivity is the mechanism
underlying the causal connection between EBV infection, im-
mune response, and the EBV-associated diseases.

Methods

An EBV immunome formed by 3,197 immunopositive linear
epitopes was assembled from Immune Epitope DataBase
(IEDB, www.iedb.org).*® The immunopositive EBV epitopes
are listed in =Supplementary Table S1 (available in the
online version). EBV epitope sequences were dissected into
pentapeptides overlapped each other by four amino acid (aa)
residues. The resulting 11,564 pentapeptides were analyzed
for occurrence(s) within the human proteome using Pir
Peptide Match Program.”® Proteins related to EBV-induced
diseases were annotated. UniProtKB database (http://www.
uniprot.org/)®' PubMed, and OMIM resources were used.

Results

Quantitation of the Peptide Sharing between EBV
Epitopes and the Human Proteome

Following matching analyses of the 11,564 pentapeptides
composing the 3,197 experimentally validated immunoreactive
EBV epitopes, it was found that almost all of the epitope-derived
pentapeptides (i.e., 93%) are widespread among thousands of
human proteins (=Table 1). From a mathematical point of view,
if one considers that the probability of a pentapeptide to occur
in two proteins is 20> (or 1 out of 3,200,000 or 0.0000003125),
then the peptide overlap existing between the EBV immunome
and the human proteome is staggering.

Distribution of the Peptide Sharing among EBV Epitopes
A synthetic snapshot (i.e., 201 EBV epitopes) of the immuno-
reactive peptide sharing is shown in =Table 2, where peptide
sequences shared with the human proteins are given in capital
format and peptide fragments uniquely present in EBV are
given with aa in small bold format. =~ Table 2 clearly shows that
the immunoreactive EBV epitopes are predominantly com-
posed by peptide sequences common to human proteins.
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Table 1 Numerical description of the pentapeptide sharing
between the set of 3,197 immunopositive EBV epitopes and the
human proteome

Pentapeptides composing the 3,197 EBV epi- 11,564
tope immunome

EBV epitope pentapeptides not shared with the [ 798
human proteome

EBV epitope pentapeptides shared with the 10,766
human proteome

Human proteins sharing pentapeptides with EBV | 18,744
epitopes

Occurrences of EBV epitope pentapeptides in 137,805
the human proteome (including multiple

occurrences)

Abbreviation: EBV, Epstein-Barr virus.

Immunologically, =Tables 1 and 2 document that the
experimentally validated immunoreactive EBV epitopes mostly
consist of pentapeptides that also occur in human proteins, in
this way indicating a highest cross-reactivity potential, given
the fact that a pentapeptide is a minimal immune determinant
that contains the immunological information in terms of both
immunogenicity and antigenicity.*>~48

The Pathological Implications of the Peptide Sharing
between EBV Epitopes and Human Proteins:
Lymphomas and Leukemias

Numerous cancer-related proteins share peptides with the
here analyzed self-reactive EBV epitopes. Reasons of space do
not permit a detailed peptide-by-peptide description of the
sharing and only a few examples are described in ~Tables 3
and 4. Specifically, ~Table 3 shows the peptide sharing
between the immunoreactive EBV epitopes and human
proteins that—when mutated, modified, improperly func-
tioning or deficient—are implicated in lymphomagenesis/
leukemogenesis.’>" It can be seen that the extent of the
peptide sharing is very high and comes to the fore with
glaring evidence when focusing on histone-lysine N-meth-
yltransferase 2D (KMT2D), the disruption of which perturbs
germinal center B cell development and promotes lympho-
magenesis.””-’® KMT2D alterations are involved in follicular
lymphoma and diffuse large B-cell lymphoma,? cutaneous
T-cell lymphoma and Sézary syndrome,®> ocular adnexal
MALT-type marginal zone lymphomas,’® and chronic mye-
loid leukemia.’* Moreover, KMT2D alterations are involved
in intraocular medulloepithelioma,” small cell lung can-
cer,%® bladder cancer,”-%8 and non-small-cell lung cancer.?®
Of not less importance, alterations of KMT2D have a causal
role in Kabuki syndrome'? that is characterized by skeletal
and visceral abnormalities and cardiac anomalies,'?" hyper-
insulinism,'%? epilepsy,'?> desmoid fibromatosis,'®* immu-
nopathological manifestations,’® lupus,'® and oriental
alterations, %7 among others.

Also, the intense peptide sharing between immunoreac-
tive EBV epitopes and KMT2C is of relevance. KMT2C not only
may act as a tumor suppressor in leukemias and T-cell
lymphomas,”>’® but it is also implicated in bladder, breast,
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Table 2 Pentapeptide sharing between 201 immunoreactive EBV epitopes and human proteins®®

Global Medical Genetics

IEDB ID° EPITOPESY IEDB ID® EPITOPES IEDB ID® EPITOPES
950 AEGLRALLARSHVER 45499 NPTQAPVIQLVHAVY 127195 TEMYIMYAM
1518 AGGAGAGGGAGGA 46498 NVTQVGSEPISPEIG 127369 WEMRAGREI
1716 AGVFVYGGSKTSLYN 47613 PGAPGGSGSGP 127392 WPTPKTHPV
2390 ALAipqcrlL 47760 PGTGPGNGLGEKGDT 127408 yamaiRQAI
2742 ALLVLYSFAL 48320 PLFDRKSDAK 137773 YNLRRGIAL
2743 ALLVLYSFALMLIIIILIIF 48486 PLSRLPFGM 138854 GAGAGAGA
3005 ALWNLHGQALFLGIVL 48852 PPPGRRPffhpvGE 138856 GRGRGRGR
3600 apifyPPVL 48876 PPPqapyqGY 138882 MTAASYARY
3782 APRLPDDPI 49864 PVFDRKSDAK 138873 LMARRARSL
3951 AQEILSDNSEISVFPK 50298 QAKWRLQTL 141342 LLDFVRMGV
5316 AVFDRKSDAK 51685 QNGALAINTF 144799 TLNLT
5317 AVFDRKSVAK 51946 QPRAPIRPI 167590 GPQRR
5326 AVFNRKSDAK 52142 QQrpvmfvSRVPAKK 186702 PQPRAPIRPIPT
5439 AVLLheesm 53195 RARGRGRGRGEKRP 191290 FIVFLQTHI
8120 DEPASTEPVHDQLL 54367 RKIYDLIEL 227777 HPVAEADYFEY
8905 DKIvgapifyPPVLQ 54728 RLRAEAQVK 230640 ASDYSQGAF
9644 DPhgpvqLSYYD 55251 RppifiRLL 230798 FYPPVLQPI
10448 DTPLIPLTIF 55298 RPQKRPSCI 231136 LAYArgqgam
10858 DYDASTESEL 55327 RPRPPARSL 231402 RRVRRRVLV
10963 DYSQGAFTPL 55529 RRARSLSAERY 231547 TVFYnippm
11804 EENLLDFVRF 55619 RRIYDIEL 231696 YRTATLRTL
12183 EGGVGWRHW 56506 RYAREAEVRF 231699 YSQGAFTPL
13628 EPDVPPGAIEQGPAD 56523 RYEDPDAPL 231800 AQPAPQAPY
16876 FLRGRAYGI 56650 RYSIFFDY 231839 DSIMLTATF
17110 FMVFLQTHI 56651 RYSIFFDYM 231840 DTRaidgfF
17600 FRKAQIQGL 57755 SFFDRKSDAK 231880 FLQRTDLSY
18328 FVYGGSKTSL 59084 SLFDRKSDAK 231966 HVIQNAFRK
18438 FYnippmPL 59432 SLREWLLRI 232020 KPWLRAHPV
18946 GDDGDDGDEGGDGDE 62305 SVRDRLARL 232021 KQRKPGGPW
19674 GGAGGAGGAGAGGGAG 67456 TYSAGIVQI 232030 KTIGnfkpy
19737 GGGAGAGGAGAGGGGR 68561 VFSDGRVAC 232074 LPTPMQLAL
20023 GGSKTSLYNLRRGTA 69558 VLKDAIKDL 232076 LQALSNLIL
21719 GPPAA 70251 VPAPAGPIV 232078 LQSSSYPGY
21723 GPPAAGPPAAGPPAA 70624 VQPPQLTQV 232080 LSaerytLF
21870 GQGGSPTAM 70932 VSFlefvgw 232081 LSVIPSNPY
22159 GRPAVFDRKSDAKST 71968 VYAASFSPNL 232086 LTQAAGQAF
22976 GVFVYGGSKTSLYNL 72028 VYGGSKTSL 232095 LVSSGNTLY
23324 GydvghGPL 72251 WAPSV 232096 LVSSSAPSW
23449 GYRTATLRTL 73221 WVPSV 232103 MEQRVMATL
23994 Hhiwgnll 74120 yhlivDTDSL 232177 QEPGPVGPL
24170 HLAAQGMAY 75188 YNLRRGTAL 232178 QEQLSDTPL
24533 HPVgeady 75189 YNLRRGTALAIPQ 232199 RESIVCYFM
24666 HRCQAIRK 75356 YPLheghgM 232214 RLHRLLLMR
(Continued)
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IEDB ID® EPITOPES¢ IEDB ID® EPITOPES¢ IEDB ID® EPITOPES¢
24667 HRCQAIRKK 75360 YPLHKQHGM 232232 RPAPpkiam
26480 IIFIFRRDLLCPLGAL 75731 YSFALMLIIILIIFIFRRD 232276 SEPCEALDL
26538 HILIF 79634 QPRAPIRPIT 232308 SQISNTEMY
27103 ILIIFIFRRDLLCPLGALCI 93251 LLARSHVER 232332 TEdnvppwl
27301 ILRQLLTGGVKKGRP 94034 THIFAEVLKD 232416 VTFSAGTFK
27375 ILTDFSVIK 97317 fwemrAGREITQ 232419 VTTQRQSVY
29618 IYLLEMLWRL 98084 GVFVYGGSK 232427 wagqigHIPY
30430 KEHVIQNAF 101654 FVYGGSKTSLY 232437 WQRRYRRIY
30431 KEHVIQNAFRK 101878 LQTHIFAEV 232473 YQEPPAHGL
33207 KRppifiRR 102253 YPLheqygM 237896 QTAAAVVF
33866 KTSLYNLRRGTALA 106084 RPRSPSSQSSSSGSPPRRP 237920 RYKNRVASR
35162 LDFVRFMGV 107724 AARQRLQDI 540571 QPRLTPPQPL
35533 LEKARGSTY 107869 GPKVKRPPI 540583 RPTELQPTP
37153 LLDFVRFMGV 108006 LLDFVrfmgy 540628 TSSPSMPEL
38514 LPGPQVTAVLLHEES 108191 VMATLLPPV 548981 LLDFVRFMG
39102 IrgkwQRRYR 118970 PPPGRRP 548987 NGALAINTF
39634 LSRLPFGMA 124861 WNLHGQALFL 548994 QNGALAINT
41113 MARRARSLSaerytL 126528 LAsamrmLW 595247 FGLVLFPAQI
41147 MATLLPPVPQQPRAG 126967 RPRPrtpew 653929 AAQGMAY
41841 mkkawLSRAQQADAG 126980 RRAALSGHL 672845 PIFIRRL
42525 MSDEGPGTGPGNGLG 126985 RRLHRLLLM 674203 RamsfiATY
42941 MVFLQTHIFAEVLKD 126986 RRRRRRAAL 675184 RppifiR
44181 NIAEGLRAL 126991 RRYRRIYDL 676208 RRIYDLI
45378 NpkfenlAEGLRALL 127118 SQAAFGLPI 695961 QAPYPGYEE

Abbreviations: EBV, Epstein-Barr virus; IEDB, Immune Epitope DataBase.

*Epitopes assembled from IEDB (Www.iedb.org).49 Epitope experimental details and references are available at www.iedb.org.

PEpitopes listed according to IEDB ID number.*
Epitope sequences given in 1-letter code.

dpentapeptides shared between EBV epitopes and human proteins are given in capital letters, while pentapeptides present only in EBV are given in

bold small format.

colorectal, endometrial, gastric, head and neck, lung, and
liver cancer, and in medulloblastoma.'%®

Then, in spite of the lack of space, it is mandatory noting the
harmful cross-reactivity platform represented by the peptide
commonality between the immunoreactive EBV epitopes and
Wiskott-Aldrich syndrome protein (WASP) (-Table 4). The 29
pentapeptides shared with EBV epitopes mainly occur through-
out the central and COOH regulatory domains of the WASP
primary sequence (~Fig. 1, shared peptides in underlined bold
character) and produce a “bull” for the EBV-activated immune
system that is practically impossible not to hit. Hitting WASP
can lead to lymphomagenesis. Indeed, WASP is a tumor
suppressor frequently low or absent in anaplastic large cell
lymphoma.?? WASP deficiency relates to Wiskott-Aldrich syn-
drome (WAS).'%-"2 WAS is characterized by eczema,
thrombocytopenia, recurrent infections, immunodeficiency,
neutropenia, and bloody diarrhea.'’® A large proportion of
WAS patients develop autoimmunity and allergy since WASP
appears to play an important role in the activation of CD4(+)
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CD25(+)FOXP3(+) natural regulatory T cells.''® Even in the
absence of typical clinical manifestations of WAS, a low expres-
sion of WASP associates with the pathogenesis of a subtype of
inflammatory bowel disease.'’® Furthermore, deficiency of
WASP associates with exacerbated experimental arthritis.'®

Overall, the peptide sharing between the immunoreactive
EBV epitopes and KMT2D, KMT2C, and WASP proteins suf-
fices to define the constellation of human diseases associated
with EBV infection.

The Pathological Implications of the Peptide Sharing

between EBV Epitopes and Human Proteins: Various

Cancers and Diseases

~Table 4 illustrates that the EBV epitope-derived pentapep-
tides are widespread among the most disparate human pro-
teins able to cause, when altered, a vast spectrum of diseases,
from diabetes and sterility to myocarditis and death,''7~'%7 the
latter two being possibly associated with the Titin imposing
peptide sharing (250 shared pentapeptides).
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Table 3 Pentapeptide sharing between immunoreactive EBV epitopes and human proteins implicated in lymphomagenesis/

leukemogenesis

Shared peptides

Lymphoma/Leukemia-related proteins containing EBV

epitope peptide(s)?

Ref?

LSPLL, RRQKR, LALRA, KEVLE, LGLGD, GNLVT, SLESV, LPTLL,
PETVP, ALYLQ, ARVKE, PSLKL, KILLA, NPETL, EGLKD, LYLQQ,
QKRPS, VAKVA, DRHSD, LQAIG, LSQVC, RPSCI

ATM: Serine-protein kinase ATM

52

PLPPP, PPLPP, LPTLL, REAIL, AERHG, CKKDH

BANK1: B-cell scaffold protein with ankyrin repeats

53,54

EEEEE, PPLPP, GAGGG, AGAGG, GAGGA, AGGGA, GRGGG,
PPPVS, LSAAS, PPLGP, PPVSP, EPGPA, PVSPG, SSLTP, TPPPQ,
GDDDD, AVAQS, DPSLG, GNSST, PGLFP, SEPVE, DDAGG,
DDDAG

BC11B: B-cell lymphoma/leukemia 11B

55-57

SSSEE, GPPSP, APAST, GPEAR, PCPQA, PQARL, RFIQA

BCL6B: B-cell/lymphoma 6 member B protein

58-62

SPSPP, PLPPV, GSGAG, PAGSL, PVPPP, EPGPA, EQASL, EGTRL,
LDLDF, LNQNL, VLQKL

BIN1: Myc box-dependent-interacting protein 1

63

LLLLL, LRLLL, RLRLL, KEDDG, EGGQN

CADM?1: Cell adhesion molecule 1

64

PPPPP, LPPPP, GSGSG, GGGSG, GAGGG, GSGGS, SGGSG,
GGSGS, SGSGG, LPPVP, PPVPA, PVPPT, QQGSG, CTPGD, PYILD

CBL: E3 ubiquitin-protein ligase CBL

65

PPPLP, PPGPS, LSPLS, SSPQP, ATSGA, ENLLD, EENLL, SPVLG,
AFEEV, GPQDP, YDAPG

CRTC2: CREB-regulated transcription coactivator 2

66

LLARL, GASGS, VAGLL, PLHAL, LARLR, SGASP, CGLLR, VPKPR,
FIRRL, TDGKT, TPLLT, ALIKT, SSCNS

DAPK1: Death-associated protein kinase 1

67,68

EEEAE, FGLSR, SDLSR, SLESV, KAIEE, VIQLV, [IAVV, VMDLL,
IAVVA, IKAIE, ESFTQ, QDVGA, RLFAA, TTGGK, VIKAI, SFTQG

EPHA7: Ephrin type-A receptor 7 (998 aa)

69

LLLLL, PPPPP, LPPPP, ALLLL, LALLL, PPPPS, PPLPP, FPPPP, SLSST,
GSPPR, PPQVP, SPSDS, TLSPS, TSEPV, SEDDP, ESVDV, GTPPQ,
TDGGG, TSVVQ, VYAAS, EDDPQ, PSELD, DLRPL, FVGDY, KGTPP,
PRLFA, VCSVA, HSPVV, ILQIS, LYEAS, PYEAF

FAT1: Protocadherin Fat 1

70,71

PPPPP, GGGGG, EEEEA, AAAAV, SSSEE, GGSGS, GGGGD,
RGGSG, GAPGG, ASGPG, LPGVP, VSPAV, PGGLG, VEAHV,
GGDGD, LRAAT, ERPLA, FPEGV, GGDKV

HIC1: Hypermethylated in cancer 1 protein

72

PPRPP, RRRKG, ATAAA, SVSQP, AEVLK, LLQTE, SHTAT

KDM®6A: Lysine-specific demethylase 6A

73,74

PPPPP, QPPPP, SPPPP, SSSSA, SSSAP, PTPPP, GAPAA, KKRKR,
RGGRG, GGRGR, PPPPY, SSSAG, GRGGR, LPPTP, APPTP, PPLGP,
PTPLP, SGSPP, PQPPL, SQASA, DDEDL, STSVP, LPGVS, SSGTA,
LTPRP, RPRGA, RQRSR, SGLGT, TPRPP, TPRPS, TSVPS, VTLPL,
DLILQ, GTPRP, TPRPV, IAVSS, LDTED, TPRPR, LGATI, SAPRK,
EGVEV, LSPAN, LSSCP, MQPPP, SLIQL, AKIEA, EDLFG, EEVEN,
QGVQV, TPRSQ, VEDLF, LGLYA, PQSGP, DSREG, VSTAD,
GPADD, PADDP, QSLIQ, VFPKD, DTDSL, GTFKP, IPQTL, PLQHW,
TGQGK, EQHGM, IDDNS, LRPQW, QRHSD, TFKPP, GPRHT

KMT2C: Histone-lysine N-methyltransferase 2C

75,76

EEEEE, QPPPP, PLPPP, SAAAA, LRLLL, PAPAA, PAAAP, PTPPP,
APPAP, GRGRG, PPSPG, PSPGS, PSPPP, RGRGR, SPLLP, AAPPA,
GPAGP, LLAAL, PAQPP, SLGLA, LAPSP, LSPLL, PGPAG, SPSQS,
SQSSS, GGRGR, GLPPP, PQGPP, RLRLL, LPPTP, LRSLG, PTLLL,
SPSSQ, TPPPS, ALAPS, EGLRA, GPQPP, PEPPT, PLTEP, SSGSP,
AASED, APVAP, AVGPP, DDEEL, ESPAR, GAHGG, GPPRL, KKRKR,
LTPRP, PALDD, PPPGR, PPQGP, PPQVP, PPTQH, PTLGK, SDEAE,
SPLLG, TPHTK, APYPG, ARPPE, ASDRL, CPSLD, DAAAR, EERPP,
EGEGD, EGPST, EPRLA, FPDTK, FPEGL, GPLAI, GPWDP, GTQDP,
IKVIE, LGLYA, LRLTP, LSPVI, PLLTV, PMSPP, PPTHP, PPVPQ,
PQPLM, PQQPM, PSRPQ, QALAP, QEPPP, QTNQA, RGAFG,
RPEFV, SDALG, SPVTP, SQTEL, SRVPA, SYTDP, TGSGG, TTPAG

KMT2D: Histone-lysine N-methyltransferase 2D

77-79

GGGGG, GGAGS, GGGGA, AGGGG, GGSGG, GGGSG, GAGG,
GGAGG, AGAGA, PPPEP, LRALL, LALRA, LTPPS, RALLA, RLLLK,
PQAPE, TPLDL, GPETR, RVGAD

NFKB2: Nuclear factor NF-kappa-B p100 subunit

80-83

AAAPA, GAAAS, PAPGL, LLGGG, TPSPS, SLPHP, PHLPP, GSPTA,
PLTSE, RDSYA, TTLAA, YPGYA, HRDSY, SYPGY

PRDM1: PR domain zinc finger protein 1

84
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Table 3 (Continued)

Shared peptides Lymphoma/Leukemia-related proteins containing EBV Ref®
epitope peptide(s)?
EEEEE, PSPPP, APAAA, SPSPP, PSPSP, SPSPS, PLDLS, DEGEE, PRDM2: domain zinc finger PR protein 2 85-88

LDLSV, LLTPV, PTVSP, KQLLQ, VLDLS, LTPVT, TVSPS, VTEDL,
AIEEE, TSEET, PAPTV, TPVTV, EAVSF, FKPPP, SFKPP, NIPQT,
YSLRL, PALRD, RSQVK, PFVGD

SSSSA, SPLLP, SSSAP, LSPLL, GTPSG, LQSET, PVSRF, AEGKL, SOCS6: Suppressor of cytokine signaling 6 68
PLRPT
KKRKR, AGAAR, LQSLA, TSPTS, RSLLT, LSLVF, AGPSV, DPVHG, TET1: Methylcytosine dioxygenase TET1 89

GPSVA, QATLG, TQLTQ, DLQDP, LEKQS, PVQGE, QERDV, PKTAS,
PLTQP, NIEEF, TPHQP, SHETP

PPPLP, PPPPS, SPPPP, SSSEE, ELLEK, SASGS, QSSHL, APGCGS, TET2: Methylcytosine dioxygenase TET2 90
LQAPG, KLSSL, PPSQL, APPSQ, HLLQH, QQASV, VTKQE, VTVLT,
PPTQH, PVTVL, GIKRT

PPPPP, LPPPP, PLPPP, PPPLP, PPLPP, PPPPS, GGGRG, APGGG, WASP: Wiskott-Aldrich syndrome protein 91
GLPAP, QPPPQ, PAPGP, PRGPP, PPSSG, SLGLA, LPAPG, LPPVP,
PLPPV, PPPSR, GGRPG, PPPGR, DLRSL, VGPLS, PMPPP, SEGLV,
SGNGP, ADIGA, DIGAP, GGDQG, PVGPL

“Human proteins reported by UniProt entry names.
bFurther references on the function/disease association at www.uniprot.org, OMIM, and PubMed resources.

Table 4 Quantitative pentapeptide matching between immunoreactive EBV epitopes and human proteins related to various
cancers and diseases

Pentapep- Human proteins sharing pentapeptides with EBV epitopes, and disease involvement®d Refs.

tides:

A® | B°

3 - ACHA: Acetylcholine receptor subunit a. MG. 7

7 - ACHD: Acetylcholine receptor subunit delta. MG. 7

8 - ACHE: Acetylcholine receptor subunit epsilon. MG. 7

9 11 ACHG: Acetylcholine receptor subunit gamma. MG. 7

31 42 AGRB1: Adhesion G protein-coupled receptor B1. Inhibits glioma growth. 18,119

15 - AKA12: A-kinase anchor protein 12. MG autoantigen. Involved in breast cancer. 120

27 - APC: Adenomatous polyposis coli protein. Relates to colorectal adenomas and breast cancer. 121-123

64 68 APCL: Adenomatous polyposis coli protein 2. Its repression promotes ovarian cancer. 123,124

57 68 ARITA: AT-rich interactive domain-containing protein 1A. Bladder, colorectal, endometrial, esophageal, gastric, kidney, | 198
liver, lung, ovarian cancers.

68 92 ARI1B: AT-rich interactive domain-containing protein 1B. Liver cancer. 108

33 - ARID2: AT-rich interactive domain-containing protein 2. Liver, lung, melanoma cancers. 108

23 - BCOR: BCL-6 corepressor. Tumor suppressor in endometrial cancer and medulloblastoma. 108,125

9 — C1S: Complement C1s subcomponent precursor. SLE. 126

20 - CHD4: Chromodomain-helicase-DNA-binding protein 4. Endometrial cancer. 108

32 34 CHD6. Chromodomain-helicase-DNA-binding protein 6. Bladder cancer. 108

38 - CHD8: Chromodomain-helicase-DNA-binding protein 8. glioblastoma. 108

10 - CLAT: Choline O-acetyltransferase. Myasthenic syndrome. 127

17 — CO4A: Complement C4-A precursor. SLE. 128

29 56 CO4AT1: Collagen o-1(1V) chain. Tumor suppressor; anti-angiogenic. 129

17 — CO4B: Complement C4-B precursor. SLE. 128

12 13 CUL7: Cullin-7. 3M syndrome with growth restriction, skeletal abnormalities and dysmorphisms. 130

25 26 DCC: Netrin receptor DCC. Required for axon guidance. Colorectal cancer suppressor. 131

16 66 DMBT1: Deleted in malignant brain tumors 1 protein. Suppressed in human lung cancer. 132,133

59 - DYST: Dystonin. Bullous pemphigoid. 134,135

42 - FAT4: Protocadherin Fat 4. Involved in hepatocellular carcinoma. and in gastric cancer risk. 136,137
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Table 4 (Continued)

Pentapep- Human proteins sharing pentapeptides with EBV epitopes, and disease involvement< Refs.
tides:

A* | B°

34 38 FUBP2: Far upstream element-binding protein 2. 138

11 - IGF1R: Insulin-like growth factor 1 receptor. Intrauterine and postnatal growth retardation. 139

14 - INSR: Insulin receptor. Insulin resistance syndrome with pineal hyperplasia. 140

13 | — | INSR2: Insulin, isoform 2. Diabetes. L

27 31 IRS1: Insulin receptor substrate 1. Diabetes. cognitive impairment and Alzheimer’s disease. 142

42 45 IRS2: Insulin receptor substrate 2. Diabetes. cognitive impairment and Alzheimer’s disease. 142-144
38 50 IRS4: Insulin receptor substrate 4. Diabetes. cognitive impairment and Alzheimer’s disease. 142

20 - KDM5A: Lysine-specific demethylase 5A. Intellectual disability. Inhibits glioma cells migration. 145,146
2 — LA: Lupus La protein. SLE. 147

16 - LRP1B: Low-density lipoprotein receptor-related protein 1B precursor 4599. 148

6 - MAG: Myelin-associated glycoprotein precursor. MS. 149

4 - MOG: Myelin-oligodendrocyte glycoprotein precursor. MS. 150

13 19 MYRF: Myelin regulatory factor. MS. 151

17 12 MYT1L: Myelin transcription factor 1-like protein. MS. 152

45 47 NBEL2: Neurobeachin-like protein 2 Role in neutrophil and NK cell function and pathogen defense. 153

27 - NF1: Neurofibromin. neurofibromatosis. 154

44 47 NMDE4, Glutamate receptor ionotropic, NMDA 2D. Epileptic encephalopathy. 155

97 113 | Obscurin: Heart disease. 136

26 39 SMCA4: Transcription activator BRG1. Esophageal, medulloblastoma, lung cancers. 157

62 113 | SRRM2: Serine/arginine repetitive matrix protein 2. Thyroid carcinoma; Parkinson’s disease. 158,159
15 - STA13: StAR-related lipid transfer protein 13. Deleted in liver cancer 2 protein. 160

8 9 TGFB1: Transforming growth factor B-1 proprotein. Lupus nephritis in SLE Patients. 161
250 | 341 TITIN: Titin. Myocarditis, acute myocardial ischemia, cardiac arrest. 162

32 34 TRNK1: TPR and ankyrin repeat-containing protein 1. SLE. Neural development and differentiation. 163

12 — TSP1: Thrombospondin-1. Inhibits tumor angiogenesis and suppresses tumor growth. 164

24 - ZAN: Zonadhesin . Crucial role in sperm-zona adhesion. Sterility. 165

40 - ZEP1: Zinc finger protein 40. Tum or-suppressive effects in prostate and nonsmall cell lung cancer. 166,167

Abbreviations: EBV, Epstein-Barr virus; DNA, deoxyribonucleic acid; MG, myasthenia gravis; MS, multiple sclerosis; SLE, systemic lupus

erythematosus.
?Column A: number of shared peptides.
bColumn B: number of shared peptides including multiple occurrences.

‘Human proteins reported by UniProt entry names. Protein details, sequence, and aa length available at www.uniprot.org.
dFurther references on the function/associated disease are available at UniProt, OMIM, and PubMed resources.

MSGGPMGGRPGGRGAPAVQONTPSTLLODHENQRLFEMLGRECL
TLATAVVQLYLALPPGAEHWTKEHCGAVCEFVKDNPQKSYFIRLY
GLQAGRLLWEQELYSQLVYSTPTPFFHTFAGDDCQAGLNFADED
EAQAFRALVQEKIQKRNQRQSGDRRQLPPPPTPANEERRGGLPP
LPLHPGGDQGGPPVGPLSLGLATVDIQNPDITSSRYRGLPAPGP
SPADKKRSGKKKISKADIGAPSGFKHVSHVGWDPQNGFDVNNLD
PDLRSLFSRAGISEAQLTDAETSKLIYDFIEDQGGLEAVRQEMR
ROEPLPPPPPPSRGGNQLPRPPIVGGNKGRSGPLPPVPLGIAPP
PPTPRGPPPPGRGGPPPPPPPATGRSGPLPPPPPGAGGPPMPPP
PPPPPPPPSSGNGPAPPPLPPALVPAGGLAPGGGRGALLDQIRQ
GIQLNKTPGAPESSALQPPPQSSEGLVGALMHVMQKRSRAIHSS
DEGEDQAGDEDEDDEWDD

Fig. 1 Distribution of EBV epitope-derived peptides throughout WASP
primary aa sequence. WASP sequence from Uniprot (http://www.uniprot.
org/).>" EBV epitope-derived peptides are underlined and bold marked. EBV,
Epstein-Barr virus; WASP, Wiskott-Aldrich syndrome protein.

Discussion

We summarize here the vast peptide platform that, with
impressive mathematical unexpectedness, connects immu-
noreactive EBV epitopes and human proteins.
Quantitatively, = Table 1 shows that the peptide sharing
does not obey to any theoretical probability expectations or
constraints such as, for example, protein dimension. The case
is best illustrated by the far upstream element-binding
protein 2 (FUBP2; 711 aa) and the low-density lipoprotein
receptor-related protein 1B (LRP1B; 4,599 aa). FUBP2 has 34
pentapeptides in common with the herpesviral proteome,
whereas the much longer LRP1B shares 16 pentapeptides
(=Table 4). That is, a high number of shared pentapeptides
can be found in a protein irrespective of the protein length.

Global Medical Genetics Vol. 7 No. 2/2020

57


http://www.uniprot.org
http://www.uniprot.org/&x0029;.51
http://www.uniprot.org/&x0029;.51

58

Anti-EBV Immune Response and Autoimmunity Kanduc, Shoenfeld

Pathologically, the peptide sharing between the immuno-
reactive EBV epitopes and the human proteome implies the
possibility of cross-reactions and of a consequent wide
spectrum of diseases, from lymphomas and leukemias to
diabetes and spermatogenesis (~Tables 3 and 4). From this
point of view, = Tables 3 and 4 offer a scientific explanation of
the clinical fact that EBV infection can trigger so many and so
various diseases in so different and distant parts of the body.
Moreover, given the number of human proteins involved in
the sharing, the possibility of cross-reacting with a specific
protein or group of proteins and inducing a specific disease
or group of diseases will depend on the “when and where”
the disease-associated protein(s) will be expressed. Conse-
quently, the EBV diseasome will manifest with different
diseases depending on the age of the subjects and on the
immunological imprinting by previous pathogen infec-
tions, 8 thus explaining also why, once the immune system
has been activated by EBV, some subjects will develop a
lymphoma while other subjects contract diabetes or lupus or
will die.

Immunologically, the vast peptide sharing between immu-
noreactive EBV epitopes and human proteins fails to support
the theory of microbial or of human immunological specificity
and nullifies the current concept of self-tolerance. Indeed, it
was advanced in the “50s and still persists today the Burnet’s
hypothesis according to which self-tolerance is achieved by the
so-called negative selection” of self-reactive lympho-
cytes.'®171 That is, lymphocytes with specificity for peptide
sequences that are expressed in the human host are hypothe-
sized to be deleted from the immunological repertoire during
fetal or early life to avoid self-reactivity and the consequent
autoimmunity. Clearly, such a hypothesis breaks down in front
of the pervasive peptide overlap between immunoreactive EBV
epitopes and human proteins. If the “negative selection”
assumptions were true, the self-reactive lymphocytes targeting
the experimentally validated EBV epitopes described here and
almost exclusively composed by peptides common to human
proteins would have had to be eliminated from the immuno-
logical repertoire in the fetal life. It seems that the postulated
deletion of potentially self-reactive lymphocytes did not occur.
Similar results have been obtained analyzing hepatitis C virus
and human papillomavirus immunoreactive epitopes.'’%!73
Altogether, our data indicate that potentially self-reactive
lymphocytes are regularly produced by the immune system.
It seems that the immune system, under physiological
conditions, does not engage reactions with self-proteins or
pathogens just in virtue of their peptide commonality.
As already discussed,'’#17% it seems that it is just the vast
peptide commonality to confer or, better, to reify protein
immunotolerance.

As a collateral note, we observe that, while = Tables 1 and 2
militate against the assumption of a “negative selection” of
self-reactive lymphocytes, = Tables 3 and 4 also question the
defensive role of the immune response. By definition, immune
system attacks pathogenic enemies and protects self-entities.
That is, it is assumed that the immune system is endowed with
the capacity of discerning a pathogen antigen from a self-
protein and of behaving consequentially by attacking the

Global Medical Genetics  Vol. 7 No. 2/2020

“foes” and defending the “friends.” Instead of being analyzed
and defined as an aggregate of molecules organized into
functional biological pathways, the immune system is consid-
ered as a “thinking entity” that sees, discriminates, decides,
and then attacks. Against such an anthropomorphous view, the
present mathematical and biochemical data document that
pathogenic immune responses can routinely occur following
infections, as already experimentally demonstrated.!””:178
Pathogenic autoantibodies—that are usually considered as
rare phenomena due to the so-called “immunological holes”
deriving from an incomplete negative selection of the self-
reactive lymphocytes'®°~1"" or that, even, have been denied as
pure fantasies'’°—seem to be the rule.

~Tables 3 and 4 show that anti-EBV immunoreactivity can
hit a myriad of human proteins that, when (epi)genetically
altered, can lead to cancers, autoimmune diseases, and even
death. Such cross-reactive potential explains why higher the
anti-EBV IgG antibody titer, worse may be the disease prog-
nosis and faster the disease progression as described by a
continuum of reports since the 1970s.%34 That is, autoim-
munity is not a matter of “rare immunological holes,” but it is
intrinsic to the immune response that involves most of the
human proteome by being most of the human proteome
shared with microbial entities as a result of a long evolutionary
path that from viruses and bacteria led to the eukaryotic
cell.'80

In conclusion, this study highlights the necessity of
reviewing the hypothesis of the “negative selection” of
self-reactive lymphocytes and, at the same time, emphasizes
the importance of the “peptide uniqueness” concept to
develop immunotherapies against EBV infection, and infec-
tions in general. Only immunotherapies based on peptides
uniquely owned by the infectious agents would offer high
specificity as well as the advantage of a lack of adverse events
in the human host.3%:181-183
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