Syntnesis

Reviews and Full Papers in Chemical Synthesis

August 15, 2024 • Vol. 56, 2445-2594

16

- C–C and C–X bond formation
- C–C and C–X bond cleavage
- Stereodefined olefins formation
- Annulation reactions
- Dearomatization reactions

Unveiling Novel Synthetic Pathways through Brook Rearrangement M. Agbaria, N. Egbaria, Z. Nairoukh

Synthesis

Reviews and Full Papers in Chemical Synthesis

2024 Vol. 56, No. 16 August II

Cover Design: © Thieme Cover Image: M. Agbaria et al.

Synthesis Recent Advances in the Multicomponent Synthesis of Heterocycles Review Using 5-Aminotetrazole Synthesis **2024**, 56, 2445–2461 DOI: 10.1055/s-0042-1751526 2445 R. Javahershenas* H. Mei M. Koley V. A. Soloshonok A. Makarem* Urmia University, Iran N-N University of Hamburg, N.N Germany NH Catalytic Asymmetric Synthesis of α -Mono and α , α -Disubstituted **Short Review Synthesis** 5- and 6-Membered α -Aza-lactams Synthesis 2024, 56, 2462–2482 2462 DOI: 10.1055/a-2270-0604 C. Palomo A. Landa* -NH M. Oiarbide* n = 1, 2 University of the Basque Country C, a ? . UPV/EHU, Spain C-H Functionalizati LG Substitution Amination Organocatalyst

Metal catalyst (Pd

Co, Ir, Rh)

Photocataly
 Enzymes

Rearrangement

Hydrogenation Deracemization

VI

Unveiling Novel Synthetic Pathways through Brook Rearrangement **Synthesis Short Review** Synthesis 2024, 56, 2483-2498 2483 DOI: 10.1055/a-2257-7304 Brook rearrangement ′_M[⊕] o^{SiR3} 0⁰ M. Agbaria 0 N. Egbaria via . M⊕ Ð `ŚiRa R1 Z. Nairoukh* The Hebrew University of Jerusa-Capabilities: lem, Israel - C-C and C-X bond formation Annulation reactions C–C and C–X bond cleavage Dearomatization reactions Stereodefined olefins formation

Syn <mark>thesis</mark>	Accessi	ng <i>meta-</i> Eno	ne-Substituted	Anisoles using /	ArN_2BF_4 as Precata-	Feature
Synthesis 2024 , 56, 2499–2506 DOI: 10.1055/a-2331-9439	iyst via	Rearrangem	ent of Alkyne-	l ethered Cyclone	exadienones	2499
A. Rai U. Das* CSIR-National Chemical Labora- tory, India		ArN ₂ BF ₄ (5 mol%) MeOH, 30 °C	$\bigcup_{R^1}^{OMe} \bigcap_{R^2} $ or	MeO R1		
			 Mild react Broad sco 	ion conditions ppe, 28 examples		
			• Up to 99%	5 yield		

© 2024. Thieme. All rights reserved.

Syn <mark>thesis</mark>	Ketyl Radical Enabl	ed Synthesis of Oxetan	es		Paper
Synthesis 2024 , 56, 2513–2520 DOI: 10.1055/s-0043-1774907	Synthetic Challenge: Acc	ess to Oxetanes from Unactivated	Carbonyls and Alken	es	2513
M. R. Gatazka S. G. Parikh K. A. Rykaczewski C. S. Schindler* University of Michigan, USA			OAC E		
	Acetyl lodide Activation of Carbonyls to α-Oxy Iodides	Ketyl Radical Intermediate	One Pot Protocol	Trifunctionalized Oxetanes	

Synthesis **2024**, 56, 2521–2528 DOI: 10.1055/a-2323-0721

B. Gopal P. R. Singh S. Bhatt A. Goswami*

Indian Institute of Technology Ropar, India

BF ₃ ·OEt ₂ -Mediated (3+2) Cycloadditic	on Reactions	of Donor-Acceptor	
Cyclopropanes (DACs) with Cyanamic	des: Access t	o Cyclic Amidines	
$Ar \xrightarrow{CO_2R}_{CO_2R} + \begin{pmatrix} R^i \\ NC^N R^2 \end{pmatrix} \xrightarrow{BF_3 \cdot OEt_2 (3 \text{ equiv})}_{DCE, 60 \circ C, 6 \text{ h}}$	$Ar \xrightarrow{CO_2R}_{N=\binom{N-R^2}{2}}$		

Up to 85%

Syn <mark>thesis</mark>	Metal-Free Synthe	sis of Selanyl-Substituted Chromenones via	Paper
Synthesis 2024 , 56, 2529–2536	Selanylation/Cycliz	zation of Alkynyl Aryl Ketones	2529
DOI: 10.1055/s-0043-1775369			
XR. Gong YH. Zhou ML. Ren	R ² M ² OMe R ¹ + Ts=S	$eR^3 \xrightarrow{MeCN} R^2 \xrightarrow{\Pi} O SeR^3$	
V V Chan*		25 examples, up to 82% yield	
YL. Xu*	Transition-metal-free	Good functional group tolerance	
Guilin Medical University, P. R. of China	Oxidant-free	Broad substrate scope	

Gram-Scale Synthesis
 Mild Reaction Conditions

Metal/Additive-Free Protocol
 Description Broad Functional Group Tolerance

2521

VIII

Syn thesis

- S. Bernhard
- N. Kümmerer
- D. Urgast
- F. Hack
- J. Ungelenk
- A. Frank
- D. Schollmeyer
- U. Nubbemeyer*

2537

Syn thesis

Synthesis **2024**, 56, 2549–2557 DOI: 10.1055/s-0043-1775368

D. V. Demchuk O. I. Adaeva D. V. Tsyganov D. I. Nasyrova R. A. Dolotov E. A. Muravsky A. E. Varakutin A. V. Samet V. V. Semenov*

N. D. Zelinsky Institute of Organic Chemistry RAS, Russian Federation Synthesis of Methoxy Analogues of Coenzyme Q10 Metabolites from
Parsley Seed Extracts via Baeyer–Villiger Rearrangement of Carbonyl-
Substituted PolyalkoxybenzenesPaper2549

© 2024. Thieme. All rights reserved.

Johannes Gutenberg-Universität Mainz, Germany

IX

Synthesis

Synthesis **2024**, 56, 2565–2571 DOI: 10.1055/a-2315-1934

Q. Huang C. Wan* J.-P. Wan* Jiangxi Normal University, P. R. of China

Photocatalytic Annulation of Enaminones with Thioureas for the Synthesis of 2-Aminothiazoles via Tandem C–S and C–N Bond Formation

2565

Paper

2572

Up to 99% yield

vn	ne	S	
- y			-

Synthesis **2024**, 56, 2572–2580 DOI: 10.1055/a-2309-1501

K.-M. Wen X.-H. Chang* C. Guo*

University of Science and Technology of China, P. R. of China Anhui Agricultural University, P. R. of China

23 example:

Wide substrate scope

Mild reaction conditio

Synthesis **2024**, 56, 2581–2587 DOI: 10.1055/a-2317-6659

A. D. Sokolova A. Y. Belyy R. F. Salikov* D. N. Platonov Y. V. Tomilov*

N. D. Zelinsky Institute of Organic Chemistry, Russian Federation

Syn<mark>thesis</mark>

Synthesis **2024**, 56, 2588–2594 DOI: 10.1055/a-2329-4214

J. C. Morales-Solís M. Ordoñez*

J. L. Viveros-Ceballos Universidad Autónoma del Estado de Morelos, Mexico Stereodivergent Synthesis of the Four Stereoisomers of Diethyl 4-Hydroxyphosphopipecolate from Ethyl (*R*)-4-Cyano-3-hydroxybutanoate

Х

Paper 2588

