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 important in the chemical industry because they facili-
is with relative ease. -Imino ketones, also known as C-
organic synthesis.
thesized from inexpensive -keto aldehydes or 1,2-dike-
water via simple mixing under various conditions. Addi-
een developed, such as NHC-catalyzed aroylation of aro-
es1 and nitrosobenzene-mediated carbon–carbon bond
is graphical review, we will focus on the synthetic appli-

n their synthesis. It is worth noting that the structure of
tain natural biological substances due to the presence of
s these substrates to be converted into biologically rele-
rocess.3 The structure of -imino ketones includes both
njugation, resembling a conjugated ketone where the -
h nitrogen in -imino ketones. This modification results
-acylimines; while 1,4-enones can undergo both 1,2-ad-
ending on the reaction conditions, C-acylimines cannot
gh direct 1,2-addition is possible. More intriguingly, the

rates umpolung reactivity. Thus, they exhibit ambiphilic
oxygen and nitrogen) displaying nucleophilic character-
nyl carbon and the imine carbon) showing electrophilic
ivity patterns, numerous synthetic groups have utilized
 constructing aza-(hetero)cyclic compounds.
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aditionally synthesized through condensing simple a
mary or secondary amines. They are structurally simi
e presence of the imino group (–N=C–). Chemically
etic chemistry particularly attractive and viable for 
, including their asymmetric counterparts. Consequ
rting from these building blocks. Herein, we provide
 past 20 years, focusing on the use of -imino keton
 and complex systems.

limines, ambiphilic reactivity, cycloadditions, annulat

f the key concerns for synthetic organic c
al synthesis from readily available and inex
mponent approaches contribute significa
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ons, asymmetric synthesis

hemists. Amongst sev-
pensive starting mate-
tly to sustainable syn-

thesis. Such reactions are particularly
tate scale-up and large-scale synthes
acylimines, are key building blocks in 
Traditionally, -imino ketones are syn
tones and amines through removal of 
tionally, several other methods have b
matic aldehydes with imidoyl chlorid
cleavage using LHMDS.2 However, in th
cations of -imino ketones rather tha
-imino ketones resemble those of cer
the imino group (–C=N–), which allow
vant -amino alcohols in a one-pot p
imine and ketone functionalities in co
carbon of a 1,4-enone is replaced wit
in completely different reactivity for C
dition and 1,4-conjugate addition dep
participate in conjugate addition, thou
-carbon in these substrates demonst
reactivity, with the two heteroatoms (
istics and the two carbons (the carbo
properties. Due to these unique react
-imino ketones as key precursors for
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 a formal [3+2] cycloaddition pathway, with enantioselectivity facilitated by the 
hosphoric acid (R)-CYC-9-CPA through hydrogen bonding.

ED aza-Diels–Alder process achieved 92% enantiomeric excess and 
ectivity using a trienamine catalyst.

t serves dual roles as a dienophile in Diels–Alder reactions and as an electrophile 
midine processes, with synthetic output influenced by reactant orientation.
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loaddition reactions of -imino ketones (part 1)1,2,4a–j 
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 ketones are vital in medicinal chemistry and as intermediates for complex molecule 
sis.
nthetic methods include nucleophilic substitutions, reductive aminations, metal-
ed N–H insertions, and NHC-mediated C–C bond cleavage reactions.

features
 Brønsted acid catalyzed aza-Diels–Alder reaction efficiently produces aza-tetracycles 
h selectivity using a BINOL-derived phosphoric acid catalyst in a hexane/toluene solvent 

ction uniquely utilizes iodine/DMSO for a one-pot multicomponent process, efficiently 
ing 1,4-dicarbonyl scaffolds essential for synthesizing complex fused heterocycles.

The method highlights in situ C-acylimines generated via copper-catalyzed oxidation, enabling the 
synthesis of polyhydropyrido[1,2-a]indoles and tetracyclic quinazolinones under mild conditions.

The reaction highlights the use of chloranil for in situ aromatization, allowing the efficient 
conversion of tetrahydroindenoquinolines into highly substituted indenoquinolines in one pot.

The authors claim that the acidity of the chiral phosphoric acid increases upon interaction with 
B(C6F5)3, likely due to their cooperative action enhancing the catalytic effectiveness.

The reaction follows
axially chiral cyclic p

A stereoselective N
>19:1 diastereosel

The imine componen
in Mannich–Ritter–a

t synthesis refers to a process where multiple reactions are carried out sequentially in 
 vessel without isolating intermediates.

A
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y arises from favorable rel–Re–Si attack on the azlactone, while rel–Re–Re interactions 
eric hindrance.

ddition of vinyl enolates to cyclic ketimines, yielding chiral tricyclic indolin-3-ones with a 
e C-2 position.
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loaddition reactions of -imino ketones (part 2)5a–h
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(5c) Du, Adv. Synth. Catal. 2015, 357, 923.
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O

le pyrrole synthesis with broad scope and atom economy that produces biologically relevant 
es, potentially useful as fluorescent probes for OLEDs and labeling.

inary deuterium experiments confirm a secondary KIE in the [4+2] cycloaddition, where the C–H 
emains intact during the rate-determining step.

The reaction idea stems from Scheidt's NHC-catalyzed [3+3] cycloaddition of nitrones with enals, yielding 
potential γ-amino acids.

The reaction idea stems from Scheidt's NHC-catalyzed [3+3] cycloaddition of nitrones with enals, yielding 
potential γ-amino acids.

The key step in this tra
in situ) in the presence

High diastereoselectivit
are disfavored due to st

The reaction entails γ-a
quaternary carbon at th
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Figure 3  Cyc
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Synthesis of quinolines via the Povarov reaction

y studies suggest the I2/DMSO system facilitates oxidative carbonylation of C(sp)–H in arylacetylenes, 
y a [4+2] cycloaddition.
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lization reactions of -imino ketones6a–i
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 the C,N-diacyliminium ion, formed in situ from glyoxal and a lactam, reacts with 
es to yield furan derivatives with broad substrate diversity.

 one-pot reaction, catalyzed by PTSA/FeCl3, involves reductive alkylation of α-keto imines 
ion, yielding products with studied substituent effects.

tions, particularly hydrogen bonding, combined with strong Brønsted acids, a chiral
arboxyphenylboronic acid, were used to efficiently facilitate this multicomponent reaction.

The reaction of 2-phenylisatogens with unsymmetrical alkynes, catalyzed by [RuCl2(p-cymene)]2/AgSbF6, demonstrates strong 
regioselectivity, broad substrate range, and high functional group tolerance.

Mild oxidizing conditions generated 2H-β-carboline-acylimine intermediates, which were subsequently trapped by the C-acylimine
to yield imidazopyridoindoles, allowing for the synthesis of a wide variety of substituted compounds without over-oxidation.
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NHC-catalyzed formal conjugate hydroacylation of 2-aryl-3H-indol- 3-ones
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a, Chem. Commun. 2018, 54, 9151.
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This work high
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s the first instance of NHC-catalyzed hydroacylation involving formal hydride transfer 
eteroatom, as earlier reports involved transfer to unsaturated carbons or combination 
rotons.

d on experimental results and previous reports, a potential transition state was proposed 
re a BINOL-derived phosphoric acid activates both the cyclic C-acylimine and the enolized 
ne via hydrogen bonding, facilitating enol attack on the Si face of the C=N group

Si-face
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ation of C–C bonds using -imino ketones7a–h 
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Dual catalytic 2-(3-indolyl)indolin-3-one synthesis using metallocarbene–azide cascade chemistry
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agents add to carbonyl groups to form tertiary alcohols, which then rearrange under acidic 
o yield indol-3-ones.

lights oxindoles with fluoroalkyl groups, improving key properties, and the significance of 2-aryl-
es as intermediates for synthesizing 2,2-disubstituted indolin-3-ones.

col offers broad substrate scope, functional group tolerance, and scalability under mild conditions 
esizing 2,2-disubstituted indolin-3-one derivatives.

Enantioselectivity is induced by the chiral phosphoric acid catalyst through hydrogen bonding, guiding the asymmetric 
formation of the C-2 quaternary stereocenter.

Various nucleophiles, such as active methylenes, silyl ketene acetals, and N-methylindole, efficiently cyclize and react with 
diazoketones, enabling one-step syntheses of ester-substituted indolinones, including tryptanthrin, irrespective of ring 
substitution.

At room temperature, a dual catalytic process involving Cu(I) generated from Cu(OTf)2 by indole redox activation and 
a Brønsted acid facilitates azide–metallocarbene coupling and indole C–C bond formation.
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o- and enantioselective asymmetric alkylations with silyl enol ethers were accomplished 
 Sc(OTf)3/pybox complexes as a chiral catalyst system.

 reaction demonstrated good substrate tolerance with high yields. A gram-scale synthesis 
g with post-synthetic modifications to produce 1,2-diketones are also reported.

C(sp2)–H imination of imidazo[1,2-a]pyridines
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eactions of -imino ketones8a–i
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Arylation and alkyne insertion to C-acylimines towards the synthesis of fully substituted pyrroles
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These findings were very well supported by performing control and cross-over experiments.

This methodology was applicable to both symmetrical and unsymmetrical diaryl α-ketoketimines, including 
arylalkyl- and dialkyl-substituted diketones.

Mechanistic studies suggest that α-carbonylimine compounds play a central role by increasing the
electrophilicity of the C=N system, facilitating oxidant attack (TBHP or SeO2) and leading to formation of the 
desired products in good yields.

The nitrone operates as an oxygen-transfer reagent and an aniline source.

This regiodivergent pyrrole synthesis involves C2-arylation with arenes (indole, pyrrole, phenols) via in situ 
C-acylimine formation, followed by aza-Michael addition, cyclization, with confirmed scalability through a
gram-scale synthesis, leading to a biologically relevant molecule
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