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Introduction

Three-phase catalysis is one of the key synthesis steps in
petrochemical, chemical, cosmetic, pharmaceutical, and food
industries, for instance, converting alkenes and aromatics to
saturatedalkanes (paraffins)andcycloalkanes (naphthenes) in
petrochemical industry to reduce toxicity and reactiveness;
converting unsaturated alkenes, alkynes, aldehydes, imines,
and nitriles to alcohols and amines in chemical/pharmaceuti-
cal industries toproducepurer products; processing vegetable
oils into solidor semisolid fats, e.g.,margarine, in food industry
to add values, aid transportation, and lengthen products shelf
times. To initiate any three-phase catalysis, e.g., hydrogena-
tion, it requiresbothgas (H2) and liquid reactantsdiffusing into
the surfaces of solid catalysts, as illustrated in►Fig. 1 focusing
on one single spherical catalyst particle of a radius R. The
reaction mechanisms of many commercial heterogeneous
catalyses, although successfully operated, are still a matter
of debate and controversy, and generally consist of sevenwell-
knownsteps1–4: (1)mass transferofgas, e.g.,H2, frombulk into
the liquid phase and then to the external surface of a catalyst
particle; (2)diffusionofboth thedissolvedH2 (gas) andorganic
(liquid) compounds through the pores of the catalyst to the

internal catalytic surface; (3) adsorptionof the gas and organic
species onto the inner surfaces of the catalyst; (4) reaction on
the inner surfaces of the catalyst; (5) desorption of the
products from the surfaces; (6) diffusion of the products
from the interior through the pores to the external surfaces;
(7) mass transfer of the products from the external surfaces to
the bulk fluid.

The steps (3) to (5) are regarded as the catalytic reaction,
while the rest of the steps are associated with mass transfer.
These reaction and transport processes occur concurrently in
such catalyses.5,6 The degree of resistance in mass transfer
increases significantly from liquid–solid systems to gas–solid
and further to gas–liquid–solid catalysis. For liquid–solid
catalysis, solid catalyst particles are readily wetted by the
surrounding liquid, the dispersion of liquid into the pores of
the catalyst is a relatively straightforward process. For three-
phase catalysis, on the other hand, the gas reactant must
“travel” through the gas–gas interface, gas–liquid interface,
and then the gas–solid interface before reaching the outer
surfaces of the catalyst. In each of the boundary crossings, the
concentration of gas is reduced, leading to the arriving con-
centration of H2 at the surfaces of solid catalysts (CH2

surface)
being significantly smaller than that of the input gas (CH2

Bulk),
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Abstract Three-phase catalysis, for example, hydrogenation, is a special branch of chemical
reactions involving a hydrogen reactant (gas) and a solvent (liquid) in the presence of a
metal porous catalyst (solid) to produce a liquid product. Currently, many reactors are
being used for three-phase catalysis from packed bed to slurry vessel; the uniqueness
for this type of reaction in countless processes is the requirement of transferring gas
into liquid, as yet there is not a unified system of quantifying and comparing reactor
performances. This article reviews current methodologies in carrying out such
heterogeneous catalysis in different reactors and focuses on how to enhance reactor
performance from gas transfer perspectives. This article also suggests that the mass
transfer rate over energy dissipation may represent a fairer method for comparison of
reactor performance accounting for different types/designs of reactors and catalyst
structures as well as operating conditions.
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as illustrated in►Fig. 2. Since the reaction rate is proportional
to CH2

surface, three-phase catalysis is often severely restricted
by the limitations in the aforementioned mass transfers,
affecting the reaction rate, selectivity, productivity, and pro-
longing reaction times.7 From chemical engineering perspec-
tives, how tominimize the difference of (CH2

Bulk�CH2
surface)

is the key in ensuring effective heterogeneous catalysis.
In 1924, Murray Raney, an American engineer, discovered

that by fusion of a 50:50 Ni/Al alloy and then leaching out the
Al using aqueous NaOH, a nickel spongewas obtained, which
was much more active than other commercial catalysts.8,9

The Raney nickel catalysts are often large in diameter, e.g., 1
to 10mm, it is easier to imagine mass transfer of gas species
into these catalyst spheres. For modern metal catalysts, their
sizes are usually range betweenmicro and nanometers, thus,
it becomes more difficult to envisage the aforementioned
mass transfer processes taking place physically within these
minute catalyst particles, but the truth is that all occur at the
molecular level. Visible bubbleswith a diameter from 100s to
1000s micrometers are at the macroscopic level, similar to
catalyst particles, mixing, catalyst surface structure, and
physical interactions that affect the outcome of catalytic

reactions. In order for any reactive gas to arrive at the
surfaces of catalysts that are surrounded by liquid, macro-
scopic bubbles must be broken into smaller and minute
ones, the latter would reach equilibrium with liquid and
become dissolved at the microscopic/nanoscopic level, and
it is thus the dissolved gas in liquid, not visible bubbles, that
holds the key for mass transfers in multiphase catalysis.
From the chemical engineering viewpoint, how to increase
the dissolved gas specious in liquid is an effective measure
of how efficient various reactors are for carrying out
heterogeneous catalyses.

Note that improving the structure of catalysts, e.g., mono-
liths, would enhance the areas of catalyst surfaces, and the
subsequent reaction efficiency.10–12 Reactors with monolith
catalyst packing are hydrodynamically superior to existing
industrial reactors13; however, the physical transport process
of gas dissolution into liquidmust be driven by fluidmechanic
forces, in combination with reactor designs/additions and
catalyst structure.

Majority of three-phase catalysis is operated at elevated
pressures, aspressure increases the solubilityofgas into liquid.
►Table 1 displays such an effect where four times more
hydrogen is dissolved in water at 5 bar compared with that
at 1 bar.14 However, it should be noted that the amount of
hydrogen dissolved in water is measured in terms of micro-
grams per gram of water, i.e., parts permillion. As a result, the
effect of increasing pressure as a means of increasing

Fig. 1 Reaction mechanism of hydrogenation involving spherical
solid catalyst particles.

Fig. 2 Mass transfer through phase boundaries in three-phase catalysis.

Table 1 Dissolved hydrogen in water at 298 K14

P (bar) g H2

dissolved/g H2O
mol H2

dissolved/mol H2O

1 1.54�10�6 1.39�10�5

2 3.09�10�6 2.78�10�5

3 4.62�10�6 4.16�10�5

5 7.72�10�6 6.94�10�5
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CH2
surface is rather small in three-phase catalysis; subse-

quently how to improve mass transfer of gas into liquid is
THEfundamental chemical engineering parameter in most, if
not all, of heterogeneous catalyses in industries. This is the
focus of this review article.

Reactors for Three-Phase Catalysis

Mixingand reactordesignsplayacritical role inheterogeneous
catalysis. The commonly used reactors in industrial multi-
phase catalyses are generally divided into two categories:
suspended or fixed bed reactors. The former is associated
with mobile catalyst particles that are suspended in reactors,
also referred as slurry reactors, including bubble columns
(suitable only for very small catalyst particles), agitated tanks,
and three-phasefluidized beds. Thefixed bed reactors involve
stationary catalysts, including packed bed, trickle bed, and
pulsed bed reactors. ►Fig. 3 illustrates the basic principles of
the two types of reactor set-ups.

In the following sections, each type of the reactors is
assessed in terms of the common yardsticks for transferring
gas into liquid, such as (1) mechanisms of breaking and
maintaining gas bubble sizes; (2) mass transfer coefficient
(kLa) per energy dissipation rate (W m�3), as mass transfer
coefficient alone cannot provide anymeaningful comparison
of reactor performances; and (3) where the dissolved gas
concentration is measured in each type of contactors is
critical, as it differentiates local from overall mass transfer
rate.

Packed Bed Reactors
In a packed bed reactor (PBR), stationary solid catalyst
particles are either packed or shelved in the reactor. The
main choice for design and operation with this type of
reactors is the direction of flow for both gas and liquid
phases, e.g., co- or countercurrent.

Trickle Bed Reactors
A trickle bed reactor is a variant of packed bedwhere the liquid
solvent is showered down from the top, thus increasing the
surface area of the liquid, and gas can go either co-currently or
counter-currently with the liquid. Hydrodynamics of trickle
bed reactors were studied15,16 using transport modeling,17

computational fluid dynamics (CFD) modeling,18 electrical
resistance tomography,19 as well as by high pressures.20 Due
to the reliability of their operation, trickle bed reactors have
won a great use in oil industry, and also found applications in
SO2 oxidation,21 glucose hydrogenation over ruthenium cata-
lyst,22 hydro-treating atmospheric residue,23 hydro-purifica-
tion,24 catalytic hydro-treatment of vegetable oils,25 fuel
production via Fischer–Tropsch synthesis,26 hydrogen produc-
tion by aqueous-phase reforming of xylitol,27 hydrogenoly-
sis,28,29 continuous thermal oxidation of alkenes with nitrous
oxide,30 liquid-phase selective hydrogenation of methylacety-
lene and propadiene,31 hydrogen peroxide,32 as well as contin-
uous operation.33

Therearetwopossiblemechanisms in tricklebedreactors for
breakingdownbubblesizes and initiatingdissolutionofgas into
liquid: (1) the interactions of liquid and gas flows, (2) through
the tortoise routes that are formed by the packed catalysts, the
denser the solid particles, the smaller the diameters of bubbles
so formed.Therearehoweverno facilitiesofmaintainingbubble
sizes in such reactors, and once gas has passed the dissolution
zones, bubble coalescence occurs readily. Thedeterminations of
gas–liquid or liquid–solid mass transfer coefficients in packed
beds were performed in systems involving either nonreaction
schemes, for example, absorption/desorption of O2 or CO2 in
water,34–37 or actual reactions.38,39 Iliuta et al compiled mass
transfer data from more than 3,200 experiments in 52 gas–
liquid systems, with over 60 packing sizes/geometries and 17
column diameters40; however, there were neither information
on where dissolved gas concentration was measured nor on
energy dissipation rates in trickle bed reactors.

Pulsed Trickle Bed Reactor
In pulsed trickle bed reactors (a variant of packed bed), either
gas or liquid flow is subjected to a pulse motion41 that can be
generated using hydropneumatic, self-propelled, or elastic
membranes.42 The pulses cause the transition to bubble flow,
while the parts of the bed in between pulses reside at the
transition to trickle flow. Properties of pulsing flow were
studied,43–45 including hydrodynamics of trickling to pulsing
flow transition46 andbubbly topulsingflowregimes,47–49 since
the majority of industrial processes operate at or near the
transition fromtrickling topulsingflow.Theoperationof trickle
bed reactors at elevated temperatures was also reported.50

The same mechanisms for breaking bubbles and initiating
dissolution of gas into liquid in trickle bed reactors apply to
pulsed trickle beds, with an additional feature of pulsing. The
purpose of pulsing liquid is effectively to “hold” bubbles for a
fraction of time (e.g., 0.5Hz), this enhances overall heat and
mass transport while reducing axial dispersion. Keeping all
other parameters constant, reactor operation in the presence
of pulses resulted in up to 30% increase in reaction rate,44 15%
increase in styrene concentration,51 and 45% improvement in

Fig. 3 Reactor type for three-phase catalysis: slurry bed (left) and
packed bed (right).
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styrene selectivity in hydrogenation of phenylacetylene over
Pt/γ-Al2O3 catalyst compared with that without. Some mass
transfer data inpulsed tricklebed reactorswere reported,52–54

once again, no informationwas given on bothwhere dissolved
gas concentration was measured and energy dissipation rate.

Slurry Bed Reactors
In slurry bed reactors, solid catalyst particles are suspended
in a liquid solution. There are many means of creating slurry
suspension, e.g., mechanic, pneumatic, oscillatory, and com-
binations of flow directions of gas and liquid phases.

Stirred Tank Reactors
Stirred tank reactors (STRs) are the widely used industrial
workhorse for chemical reactions, including heterogeneous
catalysis,55–57 catalytic cracking,58 catalytic foaming,59 and
Fischer–Tropsch synthesis,60 just to name but a few. In terms
of operation, solvent and catalyst particles are added to the
tank, and impeller or impellers are used for mixing and
suspending mobile catalyst solids. A sparger is implemented
for introducing gas, either from the top or the bottom, with or
without recycling of the product stream back to the reactor.

The mechanisms of breaking gas bubbles in STR usually
include the rotating motions of impeller(s) and the inter-
actions of fluid with the presence of wall baffles. In labora-
tory-scale STRs, mixing is regarded as uniform, thus, the
dissolved gas concentration measured anywhere in the
reactor can be used for the determination of the overall
mass transfer coefficient. With the increase of reactor vol-
ume, however, a gradient in bubble sizes is often generated,
in which the smaller bubbles appear near the tip of the
impellor, and the larger bubbles appear elsewhere. The
balance between bubble breaking and coalescence is deter-
mined by the hydrodynamic force of impeller rotation in the
presence of mixing aids, e.g., wall baffles, thus the designs of
impeller and turbulence promoter61 are critical in providing
more uniform bubble size, and in turn the higher mass
transfer rate,62,63 e.g., mass transfer using either a dual
impeller64 or radial–axial impeller combination65 was 15
to 35% higher in comparison to a single impeller. Mass
transfer of a gas into a liquid has intensively been studied
in STR, such as air inwater,66–68H2 inwater,69–72O2 in liquid
hydrocarbons,73 and in n-octacosane processes,74 in fermen-
tation vessels,75 in gas–liquid–solid systems,76–78 and in
scale-up STRs.79,80 Modeling of gas–liquid mass transfer81

was performed using an Euler–Lagrange approach82 and
CFD.83 Additionally, liquid–solid mass transfer84,85 and sol-
id–liquid mass transfer86 were also reported in STR.

Energy dissipation rates in STR takes the form of Equation
1:

Where P/V is the energy dissipation rate per volume (W
m�3), P0 the power number for the impeller depending on
the impeller type and dimensions, N the rotational speed of

the stirrer (s�1), Lh and ρ are the height (m) and density
(kg m�3) of the liquid in the reactor, and Ds and Dv the
diameters of the agitator and the vessel (m), respectively.
This is the energy that is received and utilized by the reaction
media to achieve the measured mass transfer rate in the said
reactor.87–94 Available mass transfer and energy dissipation
data are used for comparison in a later section.

Bubble Column
A bubble column by definition consists of a column filledwith
liquid and solid catalyst particles with gas being sparged from
the bottom. The hydrodynamics and heat/mass transfer of
slurry bubble columns were reported.68,95–106 In addition,
slurry bubble columns were also used in Fischer–Tropsch
synthesis,107,108 CO methanation over La-promoted Ni/Al2O3

catalyst109 and green fuel production via hydrocracking of
vegetable oil.110 It should however be noted that the bubble
column itself has no physicalmechanisms of breaking bubbles
as well as preventing bubbles from coalescing, and various
restrictions, delays, and recycles are implemented to aid the
physical process of bubble breaking, e.g., downpipes, loop, jet,
and pulsing.

Jet flow/loop reactors are the variants of bubble columns;
the implementation of jet is to break gas bubbles and the
looping is to increase the time for dissolution of gas. In jet loop
reactors, an external pump is used to circulate liquid (along
with the catalyst and often some gas) through an ejector type
nozzle, as such gas-inducing nozzle is a critical design compo-
nent of jet loop reactors,111,112 Fundamental scientific studies
of flow in and out of a nozzle were reported in terms of
mixing,113,114 hydrodynamics,115–117 bubble size distribu-
tion,118 mass transfer,119,120 as well as reaction kinetics.121

The jet in jet loop reactor sends liquid plume downwards,
causing dispersion and entrainment of minute bubbles, this is
where themaximumdissolutionofgas into liquidandexcellent
gas–liquidmass transfer takeplace.Whenthejet plumereaches
the bottom of the down-flow, the jet stream comes up, leading
to bubble coalescence and visible bubbles rising. Effectively the
dissolution zone is the length of the jet core. A study by
Mandal114 shows that the core length was 30 to 45mm in a
1,500-mm tall column of a diameter of 52mm, i.e., approxi-
mately 3% of the full length, although the core length can reach
50% of the full reactor length in industrial-scale operations.
Dissolved gas concentrations were mainly measured at the tail
end of the core, where bubble sizes were generally from 1 to
6mm.122,123 The energy requirement for forming such a jet is
usuallyhigh, e.g., 1.2 to1.5m3/h for liquidflowand0.25 to1m3/
h for gas flow in a jet loop reactor of 200mm diameter and
700mmtall118;however, neitherequationsnordataweregiven
on energy dissipation rates due to the combination of wide-
ranging fluid mechanical zones with nonstandardized designs
of jet promoters for this type of reactors.

Jet loop reactors have been used for model reactions such
as hydrogenation, chlorination, phosgenation, hydroformyla-
tion,124,125 as well as for processes of CO2 absorption,126 anaer-
obic codigestion of olive mill wastewater and liquid poultry
manure,127 treatment of slaughterhousewastewater,128 imida-
cloprid preparation,129 and microbial fermentation.130
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Fluidized-Bed Catalytic Reactors
Heterogeneous catalysis has also been performed in fluid-
ized-bed reactorswhere the gas reactant is bubbling through
a liquid bed containing a solid catalyst.131 The desirable
features of a fluidized bed reactor can briefly be summarized
as its the favorable heat transfer, temperature uniformity,
high effectiveness factors, low pressure drop, and ability to
add/remove catalysts, and some of the disadvantages are
entrainment, attrition, wear, as well as nonuniform resi-
dence time distributions, and unpredictability.131 In reality,
the design and scale-up of fluidized-bed reactors rely heavily
on experience, mechanistic understanding, and models.132

There is a void in the literature for the evaluation of energy
dissipation rate in fluidized bed reactors.

In summary, the advantages of PBRs are (1) there is lesser
demand on particle size of catalyst; (2) it is relatively easy to
design this type of reactors; and (3) there is no need for
catalyst separation after reaction, reducing unit operation
and associated requirement for energy and labor. The major
drawback for stationary catalysts is that the required quan-
tity of the catalyst is significantly higher in comparison to
mobile catalyst arrangement for the same conversion due to
reduced surface areas of the catalysts. In addition, bubble
sizes are relatively large, as there is generally lackofmeans of
holding small bubbles, leading to lower mass transfer capa-
bility and longer reaction times.

For slurry bed reactors, there are mechanic means of
breaking bubbles and achieving gas dissolution, thus increas-
ing mass transfer and reaction rates; mobile catalysts offer
significantly higher surface areas, leading tomuch less catalyst
and shorter reaction time to achieve the same conversion in
comparison to stationary catalysts. The shortcoming for this
type of operation is that a separation of solid catalyst particles
ismandatory at the end of reaction, leading to potential loss of
catalyst due to attrition. Filtered catalyst particles can be
reused for a few times depending on processes.

Micro Bubbles

Process intensification in multiphase reactors have been
used133–135 with various mechanisms, e.g., continuous
flow mixing vessels,136 vorticial ciliary flows,137 micro-
mesh,138 microbubble generators,139 microreactors,140–143

and in scale-up flow reactors.144 The key feature of these
intensified devices is the ability of producingfine andminute
bubbles; consistently, some show the capability of maintain-
ing fine bubble sizes, leading to enhanced mass transfer
rates. However, currently, there are no publications on
energy dissipation rates in these new/novel reactors.

Oscillatory Baffled Reactors

Oscillatory baffled reactors (OBR) generally consist of a
jacketed cylindrical column and a set of orifice baffles. The
up and down movement of the baffle set within the column
generates intensive eddy current that moves fluids fromwall
to center, creating equal radial and axial velocity compo-
nents, which is the essential measure of uniformmixing. The

intensity of mixing in a batch OBR can be controlled by
varying either oscillation amplitude or/and frequency when
the orifice diameter and baffle spacing are fixed. Oscillatory
amplitudes from half to one baffled cell length and oscilla-
tion frequency from 1 to 8Hz can be employed, the latter is
much higher than that in pulsed trickle bed reactors. The
energy dissipation rate in OBR was developed by assessing
inertial and frictional effects of the flow together with
pressure drop due to a static head,145–148 as in Equation 2:

Where Nb is the number of baffles per unit length in OBR
(m�1),α the ratioof theeffectiveorificeareatothe tubearea,x0
the oscillation amplitude (m), ω the angular oscillation fre-
quency (radians s�1) and CD the orifice discharge coefficient.

When gas is involved, gas bubbles are broken down by the
formed vortices; the reciprocal movement of the baffles also
holds and maintains bubble sizes. When compared with
mass transfer of air in water,149–151 air in cultures,152 O2 in
water,153,154 ozone in water,155,156 and CO2 in water157 in
STRs or bubble columns, kLa values in OBR were much
improved, which was attributed to three distinct features:
(1) smaller and more uniform bubble sizes due to the
mechanism of maintaining bubble sizes; (2) higher gas
hold-up, as a foaming layer at the top of the column acts
as a “blanket” to prevent minute bubbles from disengaging,
and the oscillatory motion drags these bubbles back into the
liquid; and (3) significantly prolonged residence times of
bubbles due to the reciprocal motion of eddies.

The above key features are manifested in a comparative
study of catalytic hydrogenation of 3-butyn-2-ol over Pd/
Al2O3 catalyst to generate 3-buten-2-ol (an intermediate) in
both a commercially available stirred tank PARR reactor
(PARR in short) and an OBR,158 where an increase in the
initial reaction rate (r0) with the increase of energy dissipa-
tion rate (stirring speed) is seen up to 29,500W m�3 in the
PARR reactor (►Fig. 4), beyond which r0 is unaffected,
indicating that the capacity of mixing in terms of stirring
speed in the PARR has reached its ceiling and no longer
affects the reaction rate.

Under the same reaction conditions, rising profiles of the
initial reaction rate against energy dissipation are still seen
for all pressures tested in the OBR (►Fig. 5), indicating that
the capacity ofmixing is not only significantly larger, but also
more energy efficient than the PARR reactor, for example,
approximately six times less energy dissipation in the OBR
was required to achieve the same reaction rate obtained in
the PARR working at the same pressure or approximately
three times less energy dissipation if the operating pressure
in the OBR was halved.

Comparison

In this article, several reactors for heterogeneous catalysis
have been introduced, each involves different physical
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designs and operating conditions. How could reactor per-
formances be compared and what would be the common
basis for such a comparison? Using the 100 m sprint as an
example, if you race against Usain Bolt, Usain Bolt will win
every time, because Usain Bolt is the fastest sprinter in the
world, while you are an amateur runner. We accept the
outcome without questioning. If you challenge Usain Bolt
with you on a motor bike, you will win the race. This leads to
the key question: what is the common basis for comparison?
From the above example, power consumed by themotor bike
is more than that by the human being, and the sprint time
divided by the power consumption would provide a level-
playingfield for comparison of different racingmodes; in this
case Usain Bolt will win it again. The exact principles are
applied here. The basis is the energy dissipation rate (Wm�3)
that is received by the reaction media in a given reactor,
which is neither the electric power of the motor that is used
for stirring in STRs nor the power of pump that is employed
for generating jets in jet loop reactors. Using either mass

transfer coefficient or bubble mean size alone does not serve
any meaningful purpose of comparison, since higher energy
dissipation experienced by the reaction mixture generally
leads to higher mass transfer rates. By dividing mass transfer
coefficient over energy dissipation that is consumed by
reactionmedia to generate themeasured transfer ratewould
offer a fairer and better comparison of reactor performances,
counting for different designs and operating conditions. This
ratio is used in this article.

While there are plentiful research papers on the evaluation
of energy dissipation in both STRs and OBRs, no research
articles are found for other types of both slurry and packed
bed contactors. In some cases, data ofmass transfer coefficient
or mean bubble sizes or gas hold-up were presented as a
function of energy dissipation, but no information was given
on how these dissipation rates were derived. Taking a leap of
faith,►Table 2 compiles the ratio of kLa over their correspond-
ing energy dissipations as thekey indicator (last column). Note
that the lowest energy dissipation data were taken for com-
parison in ►Table 2, and this is due to the unavoidable fact in
gas–liquid systems where the percentage increase in mass
transfer coefficient is much smaller than that in energy
dissipation (mixing), e.g., often 100% increase in energy dissi-
pation leads to 1 to 5% increase in mass transfer rates.

While the ratio of kLa over (P/V) in ►Table 2 gives the
indicative comparison of the capability of delivering gas to
liquid mass transfer for different types of gas–liquid con-
tactors, there are three factors to note:

• Each reactor type has means of breaking bubbles; it is
however the mechanism of maintaining achieved bubble
sizes that are critical to the overall mass transfer rate, as
gas bubbles coalesce naturally. Reactorswith higher ratios
of mass transfer over energy dissipation are generally
equipped with better mechanisms of maintaining bubble
sizes.

• Most gas–liquid contactors exhibit nonuniform mixing
patterns, or have different fluid dynamic zones, where
exactly the dissolved gas concentrationwasmeasured in a
given reactor can have significant impact on the determi-
nation of the overall mass transfer rate; unfortunately
very few details in this aspect were disclosed in published
papers.

• The contribution of static pressure head, e.g., ρgug, or
ρLgHsQg, or ρgvgVL in ►Table 2, to the overall energy
dissipation is generally very small; the inclusion of such
a term makes little difference in energy dissipation data
compared with the exclusion of it.

In summary, heterogeneous catalysis covers countless pro-
cesses involving threephases.Breakingandmaintainingminute
bubble sizes throughout each reaction are the unique chemical
engineering challenge, yet at present, there is not a unified
system of quantifying and comparing reactor performances.
Profiles of mean bubble size, gas hold-up, kLa as function of
aeration rates, jet velocity, stirring rate, nozzle diameter, etc. are
rather bespoke, and have little value for any meaningful com-
parison. In this article, the mass transfer rate over energy
dissipation is proposed as a fairer method for comparison of

Fig. 5 Effect of energy density (P/V) on initial reaction rate (r0) at
different pressures in PARR and OBR. Working conditions: initial molar
ratio 3-butyn-2-ol/Pd¼ 1,360 and temperature¼ 323 K.148 OBR, os-
cillatory baffled reactor.

Fig. 4 Effect of energy dissipation (P/V) on initial reactor rate (r0) in
the stirred tank PARR reactor at 1 bar.148
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Table 2 Comparison of mass transfer rates based on energy dissipation

Reference Reactor type Energy dissipation (P/V) equation P/V (kW m�3) kLa (s�1) Ratio kLa/(P/V)
159 Sparged stirred tank P/V¼ (P0f

3D5ρNþρgvgVL)/VL
P0–power number
f – agitation speed
N – number of impellor
D – diameter of impellor
vg – gas superficial velocity
VL – volume of liquid

0.1 0.02 0.2

160 Sparged stirred tanks P/V¼α(P02ND3/Q0.56)β/VL
N – agitation speed
D – stirrer diameter
Q – gas flow rate
P0–energy input in unaerated system
α and β depend on type
and numbers of stirrer

0.15 0.002 0.133

89 Sparged stirred tanks P/V¼ (2πNMþρLgHsQg)/VL
N – agitation speed
M – torque
Hs – liquid height
Qg – gas flow rate
VL – liquid volume

1.3 0.04 0.03

161 Sparged stirred tank P/V¼ 2πNM/VL
N – agitation speed
M – torque
VL – liquid volume

0.7 0.019 0.027

162 Jet flow loop 0.8 0.014 0.018
120 Jet loop 2 0.6 0.3
163 Plunging jet

bubble column
8 0.2 0.025

111 Gas–liquid ejector 20 1.1 0.055
164 Microbubble

nozzle
0.05 0.002 0.04

Perforated plate 0.005 0.0002 0.04

Spiral liquid flow 1.3 0.001 0.008

Venturi 1 0.0003 0.003

Ejector 7 0.0004 0.00006

Pressurized
dissolution

10 0.001 0.0001

138 Jet array downflow
bubble column

1.254 0.139 0.111

149 Oscillatory
baffled column

(P/V)¼2ρNb(1�α2)x0
3ω3/(3πCD2α2)

Nb – number of baffles per unit length
CD – orifice discharge coefficient
α – baffle-free cross-sectional area
x0–oscillation amplitude
ω – angular frequency of oscillation

0.05 0.02 0.4

153 Oscillatory
baffled column

(P/V)0¼2ρNb(1�α2)x0
3ω3/(3πCD2α2)

Nb – number of baffles per unit length
CD – orifice discharge coefficient
α – baffle-free cross-sectional area
x0–oscillation amplitude
ω – angular frequency of oscillation
(P/V)B¼ρgug
P/V¼ (P/V)0þ (P/V)B

0.02 0.005 0.25
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reactor performance accounting for different types/designs of
reactors and catalyst structures aswell as operating conditions.
Hopemore papers on energy dissipation rates for both existing
and new-type reactors are emerging to fill the gap.
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