Category

Metals in Synthesis

Key words

alkynes cobalt catalysis nitriles pyridines [2+2+2]

cycloaddition

H. BÖNNEMANN, R. BRINKMANN, H. SCHENKLUHN (MAX-PLANCK-INSTITUT FÜR KOHLENFORSCHUNG, MÜLHEIM AN DER RUHR, GERMANY)

Eine einfache, kobalt-katalysierte Pyridin-Synthese *Synthesis* **1974**, 575–577, DOI: 10.1055/s-1974-23379.

The Bönnemann-Wakatsuki Pyridine Synthesis

$$R^1$$
-C \equiv N + R^2 -C \equiv CH (2.0 equiv) solvent: PhMe, THF, n -pentane conditions: 50–100 °C

	Yield [%]	A/B
$R^1 = Me, R^2 = H$:	74	_
$R^1 = Me, R^2 = Me$:	71	61:39
$R^1 = Me, R^2 = n-Pen$	it: 58	69:31
$R^1 = Me, R^2 = Ph$:	62	80:20

	Yield [%]	A/B
$R^1 = Et, R^2 = Me:$ $R^1 = Et, R^2 = Ph:$ $R^1 = Ph, R^2 = Me:$ $R^1 = Ph, R^2 = Ph:$	84 55 54 51	75:25 65:35 68:32 77:23

Significance: In 1974, Bönnemann and co-workers reported the synthesis of pyridines from nitriles and alkynes by a cobalt(I)-catalyzed [2+2+2] cycloaddition. It should be noted that Wakatsuki and Yamazaki independently reported the same transformation using a phosphane-stabilized cobalt(III) complex (*Tetrahedron Lett.* **1973**, *36*, 3383).

Comment: A series of 'ready-made' organocobalt complexes and in situ generated catalyst can be employed in this transformation. The anionic ligand Y remains attached at the cobalt center throughout the catalytic cycle, which opens the possibility to optimize the reaction by varying this 'controlling' ligand. A comprehensive structure–reactivity study was published by Bönnemann (*Angew. Chem., Int. Ed. Engl.* **1985**, *24*, 248).