B. H. LIPSHUTZ*, Y.-J. SHIN (UNIVERSITY OF CALIFORNIA, SANTA BARBARA, USA)

A New Silyl Linker for Reverse-Direction Solid-Phase Peptide Synthesis

Tetrahedron Lett. 2001, 42, 5629-5633, DOI: 10.1016/S0040-4039(01)01093-0.

A Silyl Carbamate Linker for Solid-State Peptide **Synthesis in the Reverse Direction**

Br
$$\frac{n \cdot \text{BuLi}}{60 \, ^{\circ}\text{C}, \, \text{THF}}$$
 $\frac{(i \cdot \text{Pr})_2 \text{SiCl}_2}{60 \, ^{\circ}\text{C}, \, \text{THF}}$ $\frac{\text{MeCN}}{\text{MeCN}}$ $\frac{\text{MeCN}}{\text{r.t., } 10 \, \text{h}}$ $\frac{\text{MeCN}}{\text{R}^1}$ $\frac{\text{MeCN}}{\text{I}}$ $\frac{\text{Me$

Selected examples:

^a Yield determined by elemental analysis. ^b Isolated yield. ^c Yield determine based on resin gain in weight

Application of silyl linker in solid phase peptide synthesis in reverse direction:

Selected examples:

Significance: Silicon-containing solid supports play an inherent role in solid-state peptide synthesis. Consequently, chemists are in search of elegant and practical supports for peptide synthesis. In 2001, Lipshutz and Shin developed a novel and easily accessible silyl carbamate linker for peptide synthesis.

Comment: Polystyrene-bound silyl carbamates of amino acid esters were synthesized by treatment of amino acid esters with gaseous CO2 in dichloromethane, with subsequent trapping of the polymer-bound silyl chloride. The resulting polystyrene-bound silyl carbamates of amino acid esters can be used in solid-state syntheses of polypeptides, building from the carboxy terminus.

Synfacts 2022, 18(03), 0339 Published online: 16.02.2022

Peptide Chemistry

Key words

silyl carbamates linking group solid phase synthesis polypeptides

