
S. SAKURAI, T. INAGAKI, T. KODAMA, M. YAMANAKA*, M. TOBISU* (RIKKYO UNIVERSITY, TOKYO AND OSAKA UNIVERSITY, JAPAN)

Palladium-Catalyzed Siloxycyclopropanation of Alkenes Using Acylsilanes J. Am. Chem. Soc. **2022**, 144, 1099–1105, DOI: 10.1021/jacs.1c11497.

Cyclopropanation of Alkenes via a Siloxycarbene-**Palladium Complex**

İPr

Significance: The authors reveal that, under palladium catalysis, an acylsilane can serve as a source of an electron-rich carbene to undergo cyclopropanation with an alkene. The corresponding siloxy cyclopropanes serve as valuable homonenolates, as demonstrated through various derivatizations.

Comment: Both electron-neutral and electronrich alkenes were compatible substrates in the cyclopropanation; however, electron-rich alkenes were more reactive, suggesting an electrophilic metal carbene species is involved in the catalytic pathway. DFT studies indicate that the mechanism of the cyclopropanation proceeds through a [2+2] cycloaddition to form a palladocyclobutane intermediate.

Togni's reagent I Cu(MeCN)₄PF₆ MeOH

MeOH

51% yield

55% yield

Synfacts 2022, 18(04), 0383 Published online: 18.03.2022 DOI: 10.1055/s-0041-1737972; Reg-No.: L02022SF

Metals in Synthesis

Key words

palladium catalysis homoenolates carbenes

