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Introduction
Obstructive sleep apnea (OSA) is a common clinical disorder char-
acterized by paroxysmal and repetitive episodes of partial or com-
plete airway obstruction that occur during sleep [1]. Homeostatic 
dysregulation resulting from chronic sleep deprivation imparts in-
creased risk for cardiovascular [2], metabolic [3] and neurobehav-
ioral [4] problems as well as a significant number of sudden deaths 
[5]. Large population-based epidemiologic studies have highlight-
ed the high prevalence and wide spectrum of the severity of OSA, 
and importantly, that even mild OSA may be associated with sig-
nificant morbidity [6]. Consequently, timely diagnosis of OSA is im-
portant to halt this cascade of events, leading to an increasing in-
terest in secondary prevention using diagnostic tests.

A polysomnogram (PSG), also called a sleep study, is the univer-
sally accepted gold standard for the diagnosis and stratification of 
OSA [7]. The principal metrics derived from a PSG that are indica-

tive of the frequency and severity of airway obstruction are rou-
tinely used for clinical decision-making including surgical treat-
ment. However, with increasing costs and a growing supply-de-
mand mismatch, a rising number of PSGs appear to have been 
supplanted by diagnostic tools used within the context of out-of-
lab testing (OLT). Consequently, novel techniques that span wrist-
worn sensors [8] to abbreviated nocturnal oximetry [9] have shown 
considerable promise recently.

Notwithstanding their high sensitivity, neither in-lab PSG nor 
OLT can directly visualize anatomic details within the airway-infor-
mation that may be crucial in predicting outcomes following sur-
gery performed to ameliorate airway obstruction [10, 11]. Addi-
tionally, identification of the site(s) of airway collapse by itself can 
be used to diagnose obstruction sleep apnea. Although imaging 
technologies such as computed tomography (CT), magnetic reso-
nance imaging (MRI) and cephalometry [12, 13] are readily availa-
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Abstr act

Purpose  Obstructive sleep apnea (OSA) is a common clinical disorder 
characterized by repetitive airway obstruction during sleep. The gold 
standard for diagnosis of OSA, polysomnogram (PSG), cannot anatom-
ically localize obstruction. Precise identification of obstruction has po-
tential to improve outcomes following surgery. Current diagnostic 
modalities that provide this information require anesthesia, involve 
ionizing radiation or disrupt sleep. To mitigate these problems, we con-
ceived that ultrasound (US) technology may be adapted (i) to detect, 
quantify and localize airway obstruction and (ii) for translational appli-
cation to home-based testing for OSA.
Materials and Methods  Segmental airway collapse was induced in 4 
fresh cadavers by application of negative pressure. Following visualiza-
tion of airway obstruction, a rotary US probe was used to acquire tran-
scervical images of the airway before and after induction of obstruction. 
These images (n = 800) were analyzed offline using image processing 
algorithms.
Results  Our results show that the non-obstructed airway consistently 
demonstrated the presence of a US air-tissue interface. Importantly, 
automated detection of the air-tissue interface strongly correlated with 
manual measurements. The algorithm correctly detected an air-tissue 
interface in 90 % of the US images while incorrectly detecting it in 20 % 
(area under the curve = 0.91).
Conclusion  The non-invasive detection of airway obstruction using US 
represents a major step in expanding OSA diagnostics beyond PSG. The 
preliminary data obtained from our model could spur further research 
in non-invasive localization of obstruction. US offers the benefit of pre-
cise localization of the site of obstruction, with potential for improving 
outcomes in surgical management
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ble, the use of these methods is generally restricted and not feasi-
ble for most patients. The possible reasons may be related to con-
cerns for exposure to ionizing radiation, costs and the relative 
limitations on obtaining real-time dynamic imaging during natural 
sleep within an image scanner. Importantly, the physiology of sleep 
in its natural state may be altered by the administration of anes-
thetic agents, making accurate diagnosis from drug-induced sleep 
imaging less feasible.

One imaging technology that has not been widely harnessed to 
diagnose airway obstruction in OSA is ultrasound. As a diagnostic 
modality, it is inexpensive, portable, quiet, widely available and 
does not involve the use of ionizing radiation [14]. Overall trends 
demonstrate the increasing use of cross-sectional imaging of the 
neck [15]. Ultrasound technology has been previously utilized to 
demonstrate the structural anatomy of the upper airway and tra-
chea [16] with good correlation observed when compared with 
MRI-derived soft tissue anatomy [17].

More recently, submental ultrasonography has been used to 
predict the severity of sleep apnea by measuring tongue base thick-
ness [18]. Shu et al. [19] demonstrated its utility in quantifying air-
way obstruction in clinical volunteers with polysomnographically 
determined severe OSA. This method established nearly 100 % sen-
sitivity in demonstrating retropalatal soft tissue collapse following 
application of the Müller maneuver. In this study, the authors used 
ultrasound-derived air-tissue interfaces to demarcate anatomic 
boundaries. Although the study has significant implications, the 
technology has not been explored further for dynamic detection 
of airway obstruction.

The interaction of ultrasound with an air-tissue interface – in 
which the high acoustic impedance of air results in near-complete 
reflection of an incident ultrasonic wavefront from a transducer 
[20] – may be used to significant advantage in the functional de-
tection of airway collapse. To validate this technology, we have de-
veloped a unique cadaver-based model of upper airway obstruc-
tion, in which we corroborate endoscopic visualization with air-tis-
sue interfaces generated by a rotary ultrasound probe detecting 
all areas of potential upper airway obstruction nearly simultane-
ously. In addition, we have developed a novel ultrasound-based 
image processing algorithm that provides the significant added 
benefit of (i) automation that allows scanning of a large continu-
ous series of images, and (ii) demonstration of the exact site of ob-
struction in a noninvasive, inexpensive and portable footprint. Used 
alone (or in combination with in-lab polysomnography), this tech-
nique has potential to both diagnose OSA, and accurately identify 
the site(s) of obstruction in patients who may benefit from precise 
localization prior to OSA surgery.

Methods
Cadaver model of airway obstruction in OSA
4 fresh unfixed cadavers (2 male and 2 females) procured from the 
State Anatomy Board were utilized for this study. As only anonymized 
cadavers were used, the study was not within the purview of the in-
stitutional review board. Prior to the study, we confirmed that there 
were no direct airway interventions—except endotracheal intuba-

tion – performed in any of the cadavers that could potentially im-
pact the results obtained from this study.

Following supine positioning, a low tracheostomy incision was 
made at the level of the third tracheal ring. Subcutaneous fat was 
dissected away. The anterior wall of the trachea was identified and 
a tracheal window was completed. A size 8 disposable cuffed tra-
cheostomy (DCT™ Covidien, Minneapolis, MN) tube was inserted 
with its distal end pointing superiorly (▶Fig. 1a,b). The position of 
the tracheostomy tube was confirmed by direct visualization of the 
appliance tip using a flexible rhinolaryngoscope (ENF-GP) inter-
faced with a video workstation (Olympus Exera II CLV-180, Tokyo, 
Japan) inserted via the oral cavity and advanced until the tracheos-
tomy appliance was seen in its expected position (▶Fig. 2a). Fol-
lowing satisfactory positioning, the external flanges were secured 
using 2-point sutures. The cuff around the tube was then inflated 
to form an effective seal within the airway and the appliance itself 
was connected to wall-based suction providing negative pressure 
of 15 cm of water. This pressure cutoff was chosen based on human 
physiologic studies that identified critical pharyngeal closing pres-
sures to be in the about  − 10 cm of water [21]. The procedure was 
repeated in all 4 cadavers. Following application of negative pres-
sure, we confirmed airway collapse endoluminally by endoscopic 
visualization in all 4 cadavers (▶Fig. 2b). Furthermore, the airway 
reverted to its normal level of patency when suction was released 
(▶Fig. 2c).

A rotary ultrasonic transducer (3DART 8838, BK Medical, Her-
lev, Denmark) with its imaging extent spanning a sector of 140 ° in 
the transverse plane was placed horizontally in the submental area 
slightly above the level of the hyoid bone. The probe specifications 
allowed imaging in the 6–12 MHz range using a 192-element con-
figuration. All images were obtained using a center frequency of 
6 MHz that facilitated image acquisition up to a depth of 10 cm. The 
transducer was interfaced with an imaging platform (Flex Focus 
800, BK Medical, Herlev, Denmark) and skin contact enhanced by 
the application of conductive gel (▶Fig. 1b). The dynamic range 
was set to 70 dB. Pilot images were first obtained from the anteri-
or aspect of the neck without application of negative pressure. Air-
way patency was confirmed following the detection of the air-tis-
sue interface in the posterior third of the neck in all cadavers and 
correlated visually with endoscopically obtained images. The pro-
cedure was repeated in all 4 cadavers, which demonstrated con-
sistent disappearance and appearance of the air-tissue interface 
with application (▶Fig. 2d,e) and subsequent withdrawal of neg-
ative pressure (▶Fig. 2d,g), via the tracheostomy appliance.

Approximately 100 images were obtained from a movie cap-
tured at 20 frames/second from each cadaver by scanning the neck 
by placing the rotational axis of the transducer in the sagittal plane 
of the cadaver. This plane spanned soft tissues from the skull base 
to the thoracic inlet, to focus on structures within a range of 
6–10 cm from the skin surface. Each scan was completed in less 
than 5 s. This matches or improves OSA indices usually determined 
over 10 s. A similar number of images were acquired from the neck 
following application of negative pressure to the tracheostomy ap-
pliance and induction of airway collapse. A total of 800 images were 
thus obtained and subsequently saved via the imaging software 
for analysis offline.
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Image preparation
All 800 images were exported after conversion to an 8-bit grayscale 
format. They were then serially imported to the Image Processing 
Toolbox™ associated with the Matlab® program (R2015b, Natick, 
MA). The images (n = 800) were all inspected visually. The air-tis-
sue shadow as the ultrasound wavefront passed through deep neck 
tissues to enter the airway was observed in all images obtained 
from the unobstructed cadavers. A region of interest (ROI) was de-
fined within each image corresponding to the approximate loca-
tion of the air-tissue interface (▶Fig. 2f,g). The presence of an air 
column within each image was confirmed by visual inspection. It is 
to be noted that the manual inspection of all images was performed 
by the same individual. The same individual performed delineation 
of the steps of automated processing of the images as well.

To improve the contrast within each image, an adaptive histo-
gram equalization algorithm was applied. To achieve this, the 
image was first divided into 8 × 8 tiles and a histogram of image in-
tensity obtained from each tile separately. The local histogram 
within each tile was then interpolated with the distribution from 
the surrounding tiles, until the whole image was equalized.

Following the adaptive equalization procedure, the region of in-
terest in each image was tagged manually using a polygonal mask 
to approximate the air-tissue shadow as closely as possible (▶Fig. 
2f,g). The mean pixel intensity was calculated from within the mask 
and exported. The procedure was then repeated in all 800 images.

Steps of automated image processing
Each image was initially probed using a linear structuring element 
to examine the landscape of the image. Specifically, this method 
was used to scan the image to obtain knowledge of the distribu-
tion of pixel intensities in each segment. This step created a sym-

metric linear structuring element. The parameters of this step in-
cluded a length of the structuring element to span 100 pixels, and 
an angle of 5° of the line as measured in a counterclockwise direc-
tion from the horizontal axis. Step 2 in the same panel consisted of 
erosion, leading to a reduction in the size of the foreground pixels 
along the structuring element, thus bringing the background into 
more prominence. This was followed by morphological reconstruc-
tion of the image marker (eroded image) utilizing the original 
image designated as the mask. Panel b shows the binary image that 
corresponds to the reconstructed image.

Next, small objects, considered to be artifacts, were removed 
from the image by a sequence of steps that included (i) creation of 
a square-shaped structuring element (5 × 5), (ii) morphological 
closing using the structuring element as defined in (i) followed by 
dilation, (iii) removal of small connected components (defined as 
smaller than 20 pixels in size). Once this operation was applied, the 
outline of the detected region was further enhanced by a dilation 
operation utilizing a linear structuring element with a length of 10 
pixels.

Visual inspection revealed that the air-tissue interface was al-
ways closest to the spine, and hence ubiquitously present in the 
posterior 40 % of each image. A mask was created subsequently to 
measure the mean pixel intensity within the air-tissue interface (pa-
rameters: horizontal least distance of the mask between 20 and 
130 pixels; vertical least distance between 150 and 350 pixels). This 
was then applied (panel c in ▶Fig. 3) to the original image (panel 
d). The mean pixel intensity within the region(s) constrained by the 
thus created mask was calculated and the results exported.

An image was considered obstructed if the mean pixel intensi-
ty was less than 150 gray level units. The parameters described 
above were chosen to have greater than a 90 % agreement rate be-

Tongue
a b

Hypopharynx

Tracheostomy
appliance

Transducer

– 15 cm
water

Palate

▶Fig. 1	 Cadaver model of airway obstruction in OSA. a shows surgical placement of a tracheostomy in reverse orientation into the airway. Sites of 
potential airway obstruction are labelled. b demonstrates orientation of the ultrasound transducer array placed anteriorly in a submental position 
and a representative scanning sector. Potential sites of collapse, e. g., at the base of tongue and the palate, are also shown.
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tween the status of airway obstruction (obstructed or not) assessed 
manually and the automated method and subsequently applied to 
all of the images including those obtained from other cadavers.

Data analysis
The mean pixel intensity within the manually determined mask and 
that identified in an automated fashion within each image was com-
pared over the entire dataset using summary measures. The im-
pact of each condition was then analyzed separately. Cumulative 
probability distribution functions were plotted against all 4 condi-
tions (manual vs. automated, in obstructed vs. unobstructed im-
ages, ▶Fig. 4a). Means and standard deviations were compared 
using analysis of variance (ANOVA). Multiple comparisons were per-
formed for post-hoc analysis and P-values were calculated. A value 
less than 0.05 was deemed significant. Conditional correlation was 
examined by computing Pearson’s R2 in each condition. The relia-

bility of the automated image processing technique was examined 
using a Bland-Altman plot, and both the reproducibility coefficient 
and the coefficient of variation were calculated to determine 
whether the automated method was capable of matching the val-
ues obtained from the manual calculations. Finally, a receiver op-
erating characteristic (ROC) curve was plotted from an empiric 
threshold of mean pixel intensity to determine whether there was 
equivalence in classifying an image as obstructed or unobstructed 
in image-to-image comparisons. The area under the curve (AUC) 
was calculated for estimating the performance of the classifier.

Results
Summary measures
The mean pixel intensities in the 2 overall conditions (obstructed 
vs. unobstructed) when calculated using manual and automated 

a d

f g

e

b

c

▶Fig. 2	 Key ultrasonographic images of airway obstruction. a photograph of the base of tongue and the epiglottis with the tip of the tracheostomy 
appliance highlighted by the green circle. b endoscopic view of airway collapse induced by application of negative pressure via the tracheotomy 
conduit with the airway marked by  *  c shows the exact same location as b following release of negative pressure, with subsequent expansion of the 
airway luminal diameter. d and e represent ultrasonographic images acquired transcervically, in 2 different cadavers, after application of negative 
pressure. Yellow boxes in these images show the attenuated air-tissue interface, compatible with the significantly diminished air column observed in 
b. The green (vertical extent) and red (horizontal extent) lines outside d confine the location of this interface in the posterior 40 % of the neck. f and g 
indicate manually determined masks (yellow) marked in yellow, which establish the presence of an air-tissue interface. These also correspond to c 
wherein an air column is present ( * ). Together, these images validate the detection of the air-tissue interfaces affected by the application of negative 
pressure.
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methods were first compared (▶Fig. 4b). The highest value was 
observed in the unobstructed condition when the automated 
method was used (mean ± SD = 155.1 ± 34.7 [obstructed, manual], 
162.3 ± 34.3 [obstructed, auto], 224.8 ± 24.8 [unobstructed, man-
ual] and 233.4 ± 20.1 [unobstructed, auto] gray level units, respec-
tively). One-way ANOVA showed that there was a significant differ-
ence between these groups (F3.1599 = 779.1, P < 0.001). Post-hoc 
multiple comparisons test showed that the automated technique 
overestimated the mean intensity within each condition (P < 0.05), 
while the obstructed condition also showed overall markedly lower 
values when estimated using either technique (P < 0.05).

Results from comparisons of mean intensity values obtained 
from a smaller subset of values, i. e., those corresponding to ap-
proximate locations of the retropalatal, base of tongue and hy-
popharyngeal airway segments showed mixed results when each 
cadaver was considered separately (▶Fig. 5). In this case, each 
image series comprising 100 slices was divided into 33 % apiece 
corresponding to a different airway segment. For example, in ca-
daver 1 the hypopharyngeal airway (most inferior 33 %) showed 
maximal collapse, whereas there was more uniform collapse with-
in all areas in cadaver 2. There was good concordance between val-
ues obtained from the manual and automated methods. However, 

these values showed an overall increase in the unobstructed con-
dition, regardless of the method of estimation. Statistical compar-
isons were not performed for the 2 reasons—(i) the exact demar-
cation of the different segments of the airway could not be deter-
mined, and (ii) each cadaver may have different susceptibilities 
towards collapse in each airway segment and may lead to difficul-
ties in interpretation from the resulting complex data structure.

Classifier performance
To establish the reliability of the automated classification method, 
the correlation between automatically and manually estimated 
mean pixel intensities was examined. Moderate correlation was ob-
served in both obstructed and unobstructed conditions (R2 = 0.29 
and 0.25, respectively; n = 400; one-tailed P < 0.001 in both condi-
tions). Scatter plots demonstrating these relationships are shown 
in ▶Fig. 6a,c.

A Bland-Altman analysis was used to assess the level of agree-
ment between the 2 methods of estimation, which showed the 
95 % limits of agreement to range from  − 58 to 72 gray level units 
in the obstructed condition and  − 37 to 54 units in the unobstruct-
ed condition. The mean differences in estimation were 7.1 and 8.5 
units. The reproducibility coefficients in the 2 conditions were 65 
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▶Fig. 3	 Automated detection of air-tissue interface using a combination of morphological operations. A representative image a with a prominent 
air-tissue interface is first dilated using a structuring element. Asterisks in this sample image highlight a patent airway. This results in enlargement of 
the boundaries of regions deemed to contain bright pixels within the foreground (b, panel 1). The converse occurs in (2) following erosion, which 
partially removes the interfaces of bright foreground pixels. Panel 3 is the result of morphological closing. Panel 4 is a binary image, which is the 
product of a series of steps that include morphological closing and removal of small objects. A boundary detection algorithm applied to the regions 
in the posterior 40 % of the neck (where airway is anatomically present), highlighted by the red rectangle in c. The mean pixel intensity was calculat-
ed within the marked regions and compared to manual estimations. Air-tissue interfaces corresponding to an air column are depicted by green 
markers ( + ), while the discarded regions are shown in red. Detailed explanation of these steps is provided in text.
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(41 %) and 45 (20 %), respectively. This corresponded to coefficients 
of variation of 21 and 10 % in the 2 conditions. Scatter plots that 
explain these differences are shown in ▶Fig. 6b,d.

Based on preliminary visual assessments, a mean pixel grayscale 
intensity value of 150 units was chosen as the cut-off for determin-
ing whether a cross-sectional image was obstructed. There were 
false air-tissue interfaces generated in 12 % of the images, with ar-
tifacts generated primarily from air-water interfaces present in pre-
served cadaveric tissue. A logistical regression model was fitted to 
the predictor variable (mean pixel intensities of the ROI mask de-
termined from the automated method) and the response variable, 
which was the assessment whether the image was obstructed 
based on the cut-off. The fit of the model was statistically signifi-
cant (χ2(400) = 531, P < 0.0001) with the model explaining 57 % of 
the variance. To validate the classifier performance, a receiver op-
erating characteristic curve was constructed (▶Fig. 7). In this fig-
ure, the true positive rate was plotted against the false positive rate. 
The area under the curve was calculated as 0.91, demonstrating 
that the test was associated with satisfactory performance in de-
termining whether an image is obstructed.

Discussion
Obstructive sleep apnea is a major determinant of the cost of 
healthcare in the US and continues to consolidate its presence else-
where in the world. Thus far, the principal tool used to diagnose 
OSA is a laboratory-based full-panel PSG. Although there has been 
increasing interest in other technologies such as home-based oxi-
metry and body-worn sensors, the lack of visualization of the site 

of obstruction continues to be an unsolved problem. Clearly, re-
al-time identification of segmental airway obstruction would be a 
valuable component of an ideal diagnostic device. In the absence 
of a simple noninvasive diagnostic test, methods such as drug-in-
duced sleep endoscopy, cine-MRI and cephalometric indices con-
tinue to be used clinically, notwithstanding concerns regarding the 
use of general anesthesia (i. e., absence of sleep) and exposure to 
ionizing radiation (when cephalometry is used), as well as signifi-
cant limitations on generalizability.

Despite the emergence of ultrasound as the gold standard for 
certain areas of head and neck radiology including thyroid and soft 
tissue imaging, ultrasound remains an under-utilized modality in 
OSA diagnostics. It is readily evident that there are clear advantag-
es – e. g., lack of radiation exposure, costs, the absence of ambient 
noise, ready availability and the ability to perform dynamic imag-
ing. However, the key disadvantages include suboptimal soft tis-
sue resolution and the limitations imposed by the presence of 
acoustic barriers such as air and bone.

In the current study, we successfully utilized ultrasound to de-
termine the presence and absence of airway obstruction, based on 
a simple characteristic derived from the interaction of an ultra-
sound wavefront with an interface separating air and soft tissue. 
This method exploits the relatively opaque nature of this interface 
based on a fortified acoustic barrier set up due to the presence of 
air, which is deemed a very poor conductor for the transmission of 
sound (absence of air column = tissue apposition signifies airway 
collapse). The chief objective of this study of demonstrating pre-
cise airway collapsibility in a model of OSA is based on this key in-
teraction and is reproducible. Although this was first described by 
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▶Fig. 4	 Comparison of pixel intensities according to manual or automated detection in 4 main groups. a shows a cumulative probability distribu-
tion function highlighting differences between 4 different groups as labelled. Of note, automated estimation of pixel intensities closely approximated 
results obtained from manual estimation, regardless of the condition (obstructed vs. open). b boxplots demonstrate differences between the 
groups. Each distribution within a boxplot is represented by a horizontal black line (median) and the limits highlighted by the extent of the interquar-
tile range between 25 and 75 %. The lowest mean pixel intensity was seen in group 1, while the highest was observed in group 4. Overall, the auto-
mated method tended to slightly overestimate the extent of the air-tissue shadow. Also highlighted is the important difference seen between the 
overall and open groups, which was statistically different. Statistical comparisons are provided in text.  * P < 0.05;  *  * P < 0.001.
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Shu et al. [19] by the application of submental ultrasonography to 
demarcate air-tissue spaces within the upper neck in patients with 
polysomnographically proven OSA, we theorized that precise char-
acterization of the anatomic extent of collapse would be fraught 
with a significant amount of noise in the data, owing to the inher-
ent nature of interaction between ultrasound and soft tissue. This 
problem is generally offset in our study by identification of the 
air-tissue interface alone, without reliance on calculation of the an-
atomic extent posteriorly, as the ultrasound wavefront may be at-
tenuated significantly past the airway. In fact, we could not identi-
fy a single instance in which a brighter interface was found anteri-
or to the airway, leading to consistent visualization of air-tissue 
interaction. More importantly, the use of a rotary transducer facil-
itates nearly simultaneous identification of all anatomic sites sus-
ceptible to collapse.

Our results demonstrating a discernible correlation between 
manually and automatically determined extents of air-tissue inter-
action warrant additional evaluation in human subjects. The com-
bination of morphological operations within the context of image 
processing techniques used in this study was able to satisfactorily 
match manual labelling of images, albeit with a lack of the use of a 

training dataset. It may therefore be construed that the parame-
ters were chosen arbitrarily based on what may be considered clin-
ically apparent airway obstruction from visual inspection. Further 
research is necessary to determine the functional significance of 
obstruction measured by ultrasound by combining it with polysom-
nography.

We have identified several other areas within this study that 
need improvement. The primary limitation of our study is that the 
same individual was involved in visual inspection of the images as 
well as determination of the steps of the image processing proto-
col. We acknowledge that although our preliminary results appear 
promising, there is a need to examine the external validity of these 
results by additional testing in (i) a blinded fashion, and (ii) in live 
subjects. Additionally, the proportion of noise within our record-
ings may be lower than real-time assessments performed in live 
human subjects, as the latter may be subject to additional artifacts 
such as movement and swallowing. Consequently, more manual 
input may be obligatory to circumvent image contamination from 
these artifacts. Second, we could not reliably estimate the size of 
the air column due to the attenuation of the wavefront beyond the 
air-tissue interface. This may be resolved by the addition of sepa-
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E40



Isaiah A et al. Ultrasonographic Detection of Airway …  Ultrasound Int Open 2017; 3: E34–E42

rate transducers to image the sagittal plane. We also propose the 
use of spatial tagging to maintain uninterrupted focus on the ROI, 
as is used in color Doppler imaging. This may additionally increase 
the reliability of recordings given those circumstances. In addition, 
our present technique is limited with respect to volumetric assess-
ments as the transducer does not provide information in the coro-
nal plane. To mitigate this, the addition of an additional transducer 
that conforms to that plane may be necessary to provide that ana-
tomic detail. Other transducer shapes, e. g., concave, may better 
conform to the shape of the neck, and may thus improve imaging 
precision. Importantly, our image processing technique has been 
validated by endoscopic assessments and visual calculations only. 
The lack of polysomnographic validation as performed by a previ-
ous study [18] is thus noteworthy. Although we consider the image 
processing techniques used in this study to be the first such appli-
cation in site of obstruction imaging, they could be improved even 
further with the use of machine-learning algorithms such as those 
used in automated analysis of PSG recordings [22]. Although our 
results are based on relatively brief recordings (800 images in total), 
we expect that our techniques are likely to be more successful when 
prolonged recordings are available.

We envisage that this device could be used in conjunction with 
a pulse-oximeter trigger as a primary diagnostic modality in OLT 
studies. Additionally, we envisage that the foremost application of 
this technology would be its complementary addition to a full-pan-
el PSG in the identification of the site of airway obstruction. Patients 
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▶Fig. 6	 Reliability assessments using Bland-Altman plots. Each scatter diagram in a and c is constructed by plotting the distribution of manual 
estimations and automated measurements of mean pixel intensities in obstructed and open conditions, respectively. The degree of correlation was 
estimated using Pearson R and equations as shown in the top left. Obstructed condition correlated better as is evident from a. In b, d, the Bland-Alt-
man plots that depict the distribution of differences between the manual and automated methods are rendered. The reproducibility coefficient 
(RPC) and the coefficient of variation (CV), which were both significantly higher in the obstructed condition, are within the top right portion of each 
panel.
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▶Fig. 7	 Assessment of classification ability using ROC analysis. 
Following logistic regression fitted to the distribution of images 
considered obstructed or not based on an empiric mean intensity 
threshold of 150 gray level units, an ROC curve was constructed, 
showing the variation of the true positive rate with the false positive 
rate. An AUC of 0.91 established the satisfactory classification 
achieved by this method. Chance distribution is plotted as a 
diagonal.
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Technical Development

with OSA may have obstruction at various levels of the airway, in-
cluding the uvula-soft palate complex, the base of tongue or hy-
popharyngeal sites [23]. Undoubtedly, success rates of procedures 
such as uvulopalatopharyngoplasty (UPPP) and tongue base reduc-
tion that address single anatomic sites may be affected by the lack 
of knowledge of simultaneous obstruction occurring in other sites. 
Conversely, multi-level surgery, which is often suggested without 
reliable demonstration of obstruction that prevails in all of these 
sites may add to unnecessary procedural morbidity. For these rea-
sons, a review by Stuck et al. [24] showed that, despite the wide-
spread use of the Müller maneuver and sedated endoscopy, there 
is minimal evidence supporting their use in improving treatment 
outcomes. The relative flaws associated with these various tests are 
addressed by ultrasonographic assessments as shown in this study, 
wherein functional assessments could be carried out without the 
introduction of instruments directly into the airway. Thus, further 
refinement of ultrasound technology for this use and subsequent 
clinical validation using PSG are likely to advance the application of 
ultrasound technology to the dynamic noninvasive localization of 
airway obstruction.
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