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Abstract Lipid-based nanocarriers have been extensively investigated for drug delivery due to
their advantages including biodegradability, biocompatibility, nontoxicity, and non-
immunogenicity. However, the shortcomings of traditional lipid-based nanocarriers
such as insufficient targeting, capture by the reticuloendothelial system, and fast
elimination limit the efficiency of drug delivery and therapeutic efficacy. Therefore, a
series of multifunctional lipid-based nanocarriers have been developed to enhance the
accumulation of drugs in the lesion site, aiming for improved diagnosis and treatment
of various diseases. In this review, we summarized the advances and applications of
lipid-based nanocarriers from traditional to novel functional lipid preparations, includ-
ing liposomes, stimuli-responsive lipid-based nanocarriers, ionizable lipid nanopar-
ticles, lipid hybrid nanocarriers, as well as biomembrane-camouflaged nanoparticles,
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Introduction

The conventional “free” drugs in the clinical application
always exhibit some common problems, such as poor solu-
bility, unfavorable pharmacokinetics, suboptimal biodistri-
bution, and lack of selectivity for target tissues.1 A drug
delivery system (DDS) possesses many advantages over free
drug molecules, showing enhanced solubility and improved
pharmacokinetics and therapeutic efficacy.1 Due to the nano
size and shape, a nanodrug delivery system could achieve
theoretically superior drug delivery efficiency through spe-
cific tissue targeting and enhanced cell internalization and
transportation to specific organelles.2–4 However, the toxi-
cology of nanocarriers always reminds an important issue,
especially for medical use.5,6 It has been reported that
polymeric and metallic nanocarriers may be toxic to the
lung, kidney, or central nervous system.7 Therefore, scien-
tists have shown great interest in lipid-based nanocarriers
with the advantages of being biodegradable, biocompatible,
nontoxic, and nonimmunogenic. Lipid-based nanocarriers
show great potential in augmenting bioavailability, improv-
ing pharmacokinetic profile, reducing toxicity, and achieving
the desired concentration of the drug at otherwise inacces-
sible sites through various mechanisms.8

As the first liposome preparation, Doxil approved by Food
and Drug Administration (FDA) in 1995 opened a new era of
drug delivery using lipid-based nanocarriers. With in-depth
research, lipid-based nanocarriers have achieved good
results in drug delivery. The initial liposomes were only
composed of phospholipids and some pharmaceutical exci-
pients, which led to poor stability and accumulation both in
vivo and in vitro. Researchers later found that some mod-
ifications on the surface of liposomes could provide steric
hindrance and improve the stability of liposomes, and the
most classic modification is PEGylation.9 Moreover, other
shortcomings of liposomes have been found, including in-
sufficient targeting, rapid elimination from the blood, and
capture by the reticuloendothelial system.10 In recent years,
a series of multifunctional lipid-based nanocarriers have
been developed to improve the accumulation of drugs in
the lesion site for the diagnosis and treatment of various
diseases. The rational design of the modification on lipid-
based nanocarriers was explored, including proteins, small
molecular compounds, and even some synthetic polymer
materials, to prolong the half-life of the nanocarriers in vivo
and cross various pathological barriers for lesion-site target-
ing. With more in-depth understanding of diseases, drugs
delivered by lipid-based nanocarriers are not only small
molecular drugs, but also biomacromolecules such as anti-
bodies, messenger RNA (mRNA), and small-interfering RNA

(siRNA). At the same time, a large number of experiments are
performed to verify and optimize the lipid-based nanocar-
riers to meet various requirements of drug delivery.11–14

Lipid-based nanocarriers demonstrate advantages includ-
ing improved bioavailability, enhanced tumor targeting, and
reduced toxicity, showing great potential in clinical transla-
tion. In this review, we briefly summarized the character-
istics and applications of some traditional lipid preparations,
and emphatically introduced the advanced lipid-based nano-
carriers. In addition, we further discuss prospects and chal-
lenges of the lipid-based nanocarriers.

Traditional Lipid-Based Nanocarriers

Liposomes
Since liposomes were first discovered by Bangham in the
early 1960s,15 and they havebeenwidely studied and applied
in drug delivery due to their unique lipid bilayer structure
and characteristics (►Fig. 1). Up to now, many liposome
preparations have been approved for treatment of bacterial
and fungal infections, cancer, and other diseases (►Table 1).

Doxil was the first liposome preparation approved for
drug delivery in 1995. The formulation of Doxil contains
hydrogenated soybean phospholipids (HSPC), cholesterol
(Chol), and distearoyl phosphatidylethanolamine-N-[amino
(polyethylene glycol)-2000] (DSPE-mPEG2000). Doxorubicin
is one of the main “first-line” anticancer drugs and is effec-
tive against most types of cancers (including leukemias,
lymphomas, and breast, uterine, ovarian, and lung can-
cers).16 It is well known that conventional doxorubicin
injection has serious cardiotoxicity, which is the main prob-
lem limiting its clinical application. Since Doxil adopts
PEGylated lipids, it has high stability, prolongs the in vivo
circulation time, and reduces the toxic and side effects of
doxorubicin.17 In an early study, patients with refractory
AIDS-KS administered with Doxil showed partial response
rates between 27 and 48% and stable response rates between
26 and 29% as indicated by investigator assessment and
indicator lesion assessment.17 DepoCyt, approved in 1999,
is a sterile antimetabolite cytarabine liposome for the treat-
ment of fatal lymphomatous meningitis. Compared with
cytarabine, DepoCyt can gradually release the drug into
cerebrospinal fluid with a longer half-life and more uniform
drug distribution.18 Another liposome preparation approved
by FDA in 2015wasOnivyde,which is an irinotecan liposome
injection composed of irinotecan, distearoyl phosphatidyl-
choline, Chol, DSPE-mPEG2000, and other accessories.19

Comparedwith traditional irinotecan, Onivyde has significant
advantages, including high drug loading efficacy and extended
circulation time. In combination with 5-fluorouracil and

and further discussed the challenges and prospects of this system. This exploration
may give a complete idea viewing the lipid-based nanocarriers as a promising choice for
drug delivery system, and fuel the advancement of pharmaceutical products by
materials innovation and nanotechnology.
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leucovorin (5-FU/LV), Onivyde is the first agent to be specifi-
cally approved for use in patients with metastatic pancreatic
ductal adenocarcinoma (mPDAC) who have progressed fol-
lowing gemcitabine-based therapy.20 In the pivotal phase III
NAPOLI-1 trial, intravenous administration of Onivydeþ5-
FU/LV to patients with mPDAC was associated with a signifi-

cant approximate to 2-month median overall survival ad-
vantage compared with 5-FU/LV alone.20,21 It is also worth
mentioning that Exparel, bupivacaine hydrochloride multi-
vesicular liposomes, was approved by FDA in 2011 with
multivesicular liposome (DepoFoam) technology.22 The am-
ide local anesthetic bupivacaine hydrochloride is often used

Fig. 1 (A) Structures of liposomes, nanoemulsion, and nanomicelles. (B) Transmission electron microscopy (TEM) images of Doxil. (C) TEM
images of nanoemulsions. (D) TEM images of nanomicelles. (Adapted with permission from Zhang et al 2020179 and Zhu et al 2019180.)

Table 1 Partially approved liposome products on the market and indication

Year approved Active pharmaceutical ingredient Trade name Indication

1995 Doxorubicin Doxil Kaposi’s sarcoma, ovarian and breast cancers151

1996 Daunorubicin DaunoXome Cancers and Kaposi’s sarcoma152

1997 Amphotericin B AmBisome Aspergillosis153

1999 Cytarabine DepoCyt Lymphomatous meningitis154

2001 BPD-MA Visudyne Choroidal neovascularization155

2012 Vincristine Marqibo Acute lymphoblastic leukemia156

2015 Irinotecan Onivyde Metastatic pancreatic cancer157

2017 Daunorubicin
and cytarabine

Vyxeos Acute myeloid leukemia158

Abbreviation: BPD-MA, benzoporphyrin derivative mono-acid ring A.
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for postoperative analgesia in clinical practice, and the
action time of ordinary injection is only 5 to 7 hours, but
postoperative pain usually lasts 48 to 72hours, which is
often difficult to meet the clinical needs.23 Exparel used
diethylpyrocarbonate (DEPC), dipalmitoyl phosphatidylgly-
cerol (DPPG), Chol, and trioctyl glyceride to wrap the drug
in a honeycomb shape. Bupivacaine is gradually released
as each vesicle bursts, wherein the low phase transition
temperature of DEPC (�13°C) can make the drug release
easier and take effect more rapidly.24 Exparel can achieve
sustained analgesic effect up to 72hours and effectively
control the use of opioids, which has significant clinical
advantages.25

Although traditional liposomes have made some achieve-
ments as drug delivery carriers, some new issues have
emerged as the focus of research. Since the body is a complex
physiological environment, liposomes will be absorbed by a
large number of proteins or other substances in a short
time to form a protein corona. Protein corona can change
the physicochemical properties of liposomes, thereby affect-
ing the fate of liposomes in vivo.26 More in-depth experi-
mental and clinical data showed that patients will produce
PEG-directed immunoglobulin after the first treatment
with PEGylated liposomes. After repeated administration,
PEGylated liposomes will show accelerated clearance from
systemic circulation, the so-called accelerated blood clear-
ance (ABC) effect.27 The ABC effect will greatly reduce the
repeated treatment effect of liposomes, thus avoiding the
ABC effect as an urgent problem to be solved for PEGylated
liposomes.

In general, the current clinical application of several
typical marketed liposome formulations has shown certain
efficacy, and the mechanism of liposome action in vivo has
also been studiedwidely. At present, themain deficiencies of
traditional liposomes have been overcome with a variety of
means, which is illustrated in detail below.

Lipid-Based Nanoemulsions

Nanoemulsions are emulsions with size ranging from 50 to
500nm. In general, there are three kinds of nanoemulsion
structures: oil-in-water nanoemulsion (O/W), water-in-oil
nanoemulsion (W/O), and double continuous nanoemulsion,
wherein the O/W type is the majority of them (►Fig. 1).28,29

The addition of lipid emulsifiers such as soybean phospho-
lipids, egg yolk lecithin, DPPG, or 1,2-dipalmitoyl-sn-glyc-
ero-3-phosphocholine (DPPC) is critical for the formation of
small-sized droplets as it decreases the interfacial tension
between the oil and water phases of the emulsion. At the
same time, they also play significant roles in stabilizing
emulsions through repulsive electrostatic interactions and
steric hindrance.30

Lipid-based nanoemulsions have aroused great interest
for drug delivery due to their nanometric size, thermody-
namic stability, high drug loading capacity, biocompatibility,
and their effect for greatly increasing the solubility of insol-
uble drugs.31,32 For example, Diprivan, a propofol nano-
emulsion, using soybean oil for injection as an oil phase

and egg phospholipids as emulsifiers, was developed to
improve the water solubility of propofol. Compared with
ordinary injection, Diprivan can significantly increase the
bioavailability of propofol, and has become a commonly used
intravenous anesthetic since it came on the market in
1986.33–35 CINVANTI (HTX-019) is a novel injectable nano-
emulsion formulation of the NK-1RA aprepitant approved by
FDA in 2017.36 The compendial excipients used in the
CINVANTI intravenous formulation (egg lecithin, ethanol,
sodium oleate, soybean oil, and sucrose) allow insoluble
aprepitant to be incorporated into an emulsion without
synthetic surfactants, and thus avoid associated toxicities.37

CINVANTI is approved for administration as a 30-minute
intravenous infusion and 2-minute intravenous push in
combination with other agents to prevent chemotherapy-
induced nausea and vomiting.37,38

Lipid-Based Nanomicelles

Lipid-based nanomicelles are colloidal dispersions that self-
assemble from amphiphilic phospholipid molecules, gener-
ally less than 100nm in diameter, with numerous advantages
including improved solubility for insoluble drugs and in-
creased targeting to tumor areas.39 As shown in ►Fig. 1,
nanomicelles can carry lipophilic drugs in the internal
hydrophobic core, and when they are in nonpolar solvents,
micelles are oriented in opposite ways to form hydrophilic
cores, which can be used to encapsulate macromolecules
such as hydrophilic drugs and proteins. This lipid nanocarrier
system has not been explored to date, but it could serve as a
potential therapeutic diagnostic nanomedicine for cancer
treatment.

In recent research studies, a docetaxel-loaded nanomi-
cellewas designed and characterized byMa and coworkers to
treat xenograft breast cancer.40 Solutol HS 15 (polyglycol
mono- and di-esters of 12-hydroxystearic acid and�30% free
polyethylene glycol) and soybean phospholipid S100 were
the main components of the nanomicelles.41 In vivo results
suggested that this lipid-based nanomicelle system was
effective in inhibiting tumor growth, with little toxicity. In
addition, Bahadori et al described a new lipid-based formu-
lation of vinorelbine (VLB) using PEGylated phospholipid
micelles, which can overcome the loading and stability
problems of stealth liposomal formulation of VLB.42 Their
results indicated that the VLB nanomicelles showed �6.7-
fold higher antitumor activity against MCF-7 breast cancer
cells, compared with free drugs.43 Furthermore, they
reported enhanced aqueous solubility and therapeutic
efficacy of several anticancer drugs when incorporated in
phospholipid micelles.43–45 Collectively, lipid-based nanomi-
celles show great potential in drug delivery and are worth
exploring in the near future.

Stimuli-Responsive Lipid-Based
Nanocarriers

Although traditional liposomes have been widely used in
DDSs due to their advantages of low toxicity and good
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biocompatibility, there are still some problems such as
unexpected drug release and low targeting. To optimize
the traditional liposomes, scientists have developed stim-
uli-responsive liposomes which can maintain structural
stability in the circulation system and normal tissues, but
change under the stimulation of specific environmental
conditions (pH changes, enzyme transformations, redox
reactions, and temperature responsiveness, etc.) to release
the encapsulated drugs or genes and target the specific site
(►Fig. 2).

As we know, some pathological sites have different pH
profiles from that of normal tissues (e.g., tumors are often
more acidic than healthy tissue, with extracellular pH values
averaging 6.8–7.0, but some as low as 5.746). Therefore,
scientists introduced pH-sensitive peptides or pH-sensitive
polymers into the traditional liposomes; thesemodifications
lead to conformation change in an acidic environment to
release therapeutic agents, so as to improve the therapeutic
effect.47,48 The pH-responsive lipid-based nanocarrier DDS
falls into two categories based on the changes in the pH
gradient outside and within the cells: one is the polymer’s
variations in conformation or dissolution behavior under the
extracellular pH microenvironment,47–50 and the other pos-
sibility is that the delivery system will dissolve under the
intracellular endosomal pH environment due to the breakage
of groups that are acid stimuli in the nanocarriers.51–54 A
classic example is the combination of phosphatidylethanol-
amine (PE) or its derivatives with compounds containing an
acidic group (e.g., carboxylic group) that acts as a stabilizer at
neutral pH. Soares et al utilized the polymorphic phase
behavior of the natural phospholipid 1,2-dioleoyl-sngly-
cero-3-phosphoethanolamine (DOPE) that adopts a bilayer

structure (Lα phase) at neutral pH and an inverted hexagonal
phase II at low pH, inducing membrane destabilization and
the release of contents.55

Furthermore, there are many esterases or proteases such
as matrix metalloproteinases (MMPs) and phospholipase A2
(PLA2) in a tumor microenvironment, which play important
roles in tumor growth, invasion and metastasis, and their
concentration and activity are much higher than those in a
normal tissue.56 Thus, enzyme-responsive carrier systems
most often rely on the cleavage of esters or amides in short
peptide sequences of liposomes by these enzymes to release
the therapeutic agent selectively.57,58 Chen et al proposed a
MMP2-responsive integrated immunochemotherapeutic
strategy to deliver paclitaxel (PTX) and anti-CD47 (aCD47)
by detachable immune liposomes (ILips).59 This enzyme-
responsive carrier system represented a promising approach
to synchronously enhance immune response and tumor-
killing effects, improving the therapeutic efficacy against
triple-negative breast cancer. Lee et al synthesized PEG-Gly-
Leu-Phe-Gly (GLFG) using DSPE-PEG (5000) amine, DPPC,
and (2,3-dioleoyloxy-propyl)-trimethylammonium-chloride
(DOTAP) as lipid materials after PEG modification.60 Adria-
mycin-loaded GLFG liposomes were further prepared. These
liposomes are degraded by cathepsin B enzyme, which is
overexpressed in several cancer cell types and exhibits an
effective anticancer effect onHepG2 cells in vitro and inhibits
cancer cell proliferation in a zebrafish model. Ji et al devel-
oped a β-cyclodextrin (β-CD)-modified MMP-2-responsive
liposome, which can be cleaved in MMP-2-overexpressed
tumor cells.61 The liposomes based on the lipid materials
DSPE-PEG (3400) -RGD and DSPE-PEG (3400)-pep-CD are
combined with chemotherapy drugs to regulate pancreatic

Fig. 2 Potential of stimuli-responsive smart nanocarriers. (A) Structure diagram of stimuli-responsive lipid-based nanocarriers. (B) MMP2-
responsive liposomes designed for the enhanced therapeutic efficacy against triple-negative breast cancer. (C) Release of anti-CD47 (aCD47)
from ILips with or without MMP2 incubation. (D) Cellular uptake of free aCD47, Lips, and ILips in MDA-MB-231 cells and M2 macrophages. (E)
Tumor growth profiles in mice treated with MMP2-responsive liposomes. (Adapted with permission from Chen et al 202159.)
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stellate cells, and achieve targeted delivery of antitumor
drugs for pancreatic cancer therapy.

In addition, redox-sensitive smart nanocarriers were
designed based on the high expression of oxidoreductase
(such as glutathione-peroxidase) in cancer cells. The level of
glutathione (GSH) in tumor sites is 100 to 1,000 times higher
than that in normal tissue interstitium.62,63 Redox-sensitive
chemical bonds are broken in response to the stimulation of
high GSH concentration, resulting in carrier degradation and
drug release. At present, disulfide bond as the most widely
used chemical bond among redox sensitive carriers64 is often
used to connect polymer materials to lipids, which can be
broken in the tumor site. Fu et al developed PTX-loaded
liposomes functionalizedwith TAT (themost frequently used
cell-penetrating peptides) and PEG based on the soybean
phosphatidylcholine (SPC) and DSPE-PEG.65 Under physio-
logical conditions, TAT was shielded by the PEG layer and
liposomes exhibited a long blood circulation.65 At tumor
sites, PEG could be detached in the presence of the exogenous
reducing agent (GSH) and TAT was exposed to facilitate cell
internalization.65 PTX-C-TAT-LP with GSH strongly inhibited
the proliferation ofmurinemelanoma B16F1 tumor cells and
showed a high tumor inhibition rate (69.4%) in B16F1 tumor-
bearing mice.65

Ionizable Lipid Nanoparticles

In recent years, nucleic acid-based gene therapy has been
widely concerned and applied in the treatment of cancer,
genetic diseases, and other diseases.66 Ionizable lipid nano-

particles (LNPs) are the most clinically advanced nano-
delivery system to maintain the stability of therapeutic
nucleic acids,67 and achieve effective delivery into cells for
gene regulation.68 LNPs, in the modern definition, are nano-
sized lipid systems made of two or more (generally four)
lipids at varying ratios.69 Common lipid types are ionizable
lipids, phospholipids, cholesterol, and PEGylated lipids.70

LNP is positively charged at acidic pH, where it binds well
with negatively charged nucleic acids. It is neutral in blood
(physiological pH environment) and can reduce the toxic
effects of cationic lipids. LNP can be internalized by cells
through endocytosis, and then release the drugs into the
cytoplasm through endosomal escape, which plays an im-
portant role in the intracellular function of mRNA, not only
protecting mRNA from degradation, but also allowing
nucleic acid to enter cells (►Fig. 3).67,70,71

Onpattro is thefirst approved siRNAdrug in theworld and
the first gene therapy drug based on the LNP administration
system for the treatment of peripheral multiple nerve dis-
eases.72 It isworthmentioning that Onpattro is prepared bya
new ionizable cationic lipid material (6Z,9Z,28Z,31Z)-hepta-
triacont-6,9,28,31-tetraene-19-yl4-(dimethylamino) buta-
noate (DLin-MC3-DMA), referred to as MC3. MC3 has a
unique pH-dependent charge variability, which is positively
charged under acidic conditions, while neutral under
physiological pH conditions. LNP containing considerable
siRNA can be prepared because positively charged MC3
and negatively charged nucleic acid are attracted under
acidic conditions. Under physiological conditions, neutral
LNP can avoid the toxicity and side effects caused by cationic

Fig. 3 (A) Chemical structure of ionizable lipid materials for nucleic acid delivery. (B) Structure diagram of Onpattro and BNT162b2 LNP, two
approved nucleic acid drugs. (C) Intracellular mechanism of LNP loaded with mRNA. (D) Confocal images of HepG2 cells transfected with siRNA-
loaded DC-based LNPs, showing the endosome (red) escape of siRNA (green). (Adapted with permission from He et al 201880.) LNP, lipid-based
nanoparticle; siRNA, small-interfering RNA.
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lipids.73 Delivery of RNAs to target cells by clinically transla-
tional LNPs provides vast opportunities to tackle a series of
life-threatening diseases including the novel coronavirus
disease 2019 (COVID-19).74 In 2020, two mRNA vaccines,
BNT162b2 and mRNA-1273, received emergency authoriza-
tion for use from the FDA and EuropeanMedicines Agency as
the vaccines for the prevention of COVID-19. BNT162b2 is a
LNP-formulated nucleoside-modified mRNA vaccine.75 ((4-
Hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyl-
decanoate) (ALC-0315), an ionizable lipid, is the key compo-
nent of BNT162b2 and shows better delivery efficacy and
pharmacokinetics than MC3.12

The global mRNA research and development is gradually
rising, and various biological drug companies have invested a
lot of research and development efforts in LNP technology. A
large number of LNP-based mRNA vaccines are currently
under development for influenza, human immunodeficiency
virus, Zika, variants of COVID-19, and other infectious dis-
eases. LUNAR-COV19 (ARCT-021), a novel coronavirus vac-
cine, is in clinical trials. Based on their experience in fighting
bone fever andyellow fever, the research teamused anmRNA
vaccine that mimics the coronavirus and can reproduce
itself.76 Moderna Inc.’s mRNA-1345 Respiratory Syncytial
Virus (RSV) vaccine is another vaccine in the clinical trial
stage. This mRNA vaccine uses the same LNP as the Modena
COVID-19mRNAvaccine and contains optimized protein and
codon sequences.77

At present, research studies are focusing on designing LNP
with both the ability of targeting and endosomal escape.78

For example, Dhaliwal et al constructed mRNA-loaded cat-
ionic LNP using DPPC, DOTAP, and Chol, with an mRNA
encapsulation efficiency of 80%. The mRNA was enriched
in the brain by nasal administration.79 He et al synthesized
an ionizable lipid named DC and developed DC-based LNPs,
termed DCLC nano-transformers. DC-based LNPs were nega-
tively charged in physiological pH (pH¼7.4) and nearly
neutral in endosome. Upon protonation at acidic pH, the
positive surface charge of DC LNPs induces endosomal
membrane fusion, thus facilitating the release of siRNA
into the cytoplasm. DC LNPs delivered cyclin-dependent
kinase 1 (CDK1)-siRNA efficiently, leading to up to 95%
reduction of CDK1 mRNA in HepG2 cells in vitro, and
significantly suppressed the HepG2 tumor growth in nude
mice.80 In addition, Rosenblum et al developed a safe and
efficient LNP for the delivery of Cas9 mRNA and single-guide
RNA, using an ionizable lipid from a novel ionizable amino
lipid library which is based on hydrazine, hydroxyl-amine,
and ethanolamine linkers with a linoleic fatty acid chain and
amineheadgroups. The prepared LNP can specifically deliver
CRISPR components to bone marrow, thereby enhancing
gene editing of hematopoietic stem cells and bone marrow
cells. This is important for the development of therapies for
inherited blood disorders such as sickle cell anemia.81

RNA therapy has made remarkable progress in recent
years, thanks to the development of LNPs, especially their key
component, ionizable lipids. At present, many studies have
used ionizable lipids with different structures to improve the
physicochemical properties or nucleic acid delivery efficien-

cy of LNP, such as ionized polymer lipids and ionized
biodegradable lipids.74 For example, Dahlman et al found
that C15 epoxy-modified low-molecular-weight polyethyl-
ene imine (7C1) could achieve the most efficient nonliver
siRNA delivery.82 Similarly, Lin et al found that G0-C14
confers high accumulation of ionizable polymer lipids effec-
tive for transfection of various RNA therapeutics in tumors.83

The biodegradable MC3 replacement (L319) is produced by
replacing a double bond at each tail with a primary ester
because of the slower degradation rate of the dioleyl tail in
MC3. L319 not only maintained its efficacy in vivo, but also
showed rapid elimination and improved tolerability.84

Although LNPs for nucleic acid vaccines and therapies
have shown great prospects in the prevention and treatment
of diseases, several challenges need to be addressed to reach
the full potential of RNA therapeutics. A key challenge is that
current intravenous administration of LNP may cause reac-
tions associated with infusion.85 In this regard, the optimi-
zation of linker chemistry and inclusion of anti-
inflammatory properties deserve further study. On the other
hand, the large-scale production of LNPs cannot be ignored
that the number of companies producing functional lipids
and LNP remains limited. Simplified synthesis and acceler-
ated ionized lipid screening using combinatorial chemistry
may alleviate this problem.86 The future direction of LNP
research and development is to expand the application range
of drug and gene delivery, optimize the effective delivery of
vectors to target cells, and reduce ineffective delivery to
nontarget cells. It is believed that continuous structural
modification and screening will enable LNPs to have greater
development prospects.

Lipid–Polymer Nanocarriers

Liposomes have been widely used in DDSs due to the low
toxicity and good biocompatibility; however, their applica-
tion is restricted by susceptibility to uncontrollable drug
release, instability, insufficient drug loading, and so on.87–89

Polymer-based nanosystems are stable inside the cells, and
show controlled drug release behavior.90–93 Therefore, to
overcome the limitations of liposomes, researchers designed
lipid–polymer hybrid nanocarriers, which consist of a hy-
drophobic polymeric core, a lipid shell surrounding the
polymeric core, and a hydrophilic polymer layer outside
the lipid shell (►Fig. 4). In general, the most commonly
used lipids are zwitterionic, cationic, anionic, and neutral
phospholipids such as lecithin, DPPC, 1,2-dipalmitoyl-3-tri-
methylammonium-propane (DPTAP), DOTAP, or DOPE. The
interaction between the static electricity carried by the lipid
and thepolymerwith opposite chargewas utilized to promote
cellular uptake and improve the stability of nanocarriers.94

This core–shell structure combines the advantages of both
liposomes and polymer nanoparticles, including high biocom-
patibility and stability, improved drug payload, controlled
drug release, longer circulation time, and superior in vivo
efficacy.

In a recent study, Yang et al prepared a novel folic acid
receptor-targeted lipid–polymer hybrid nanoparticle,95 in
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which two drugs (doxorubicin and edelfosine) were stably
loaded into the hydrophobic poly (lactic-co-glycolic acid)
cores and the lipid shell was made of lecithin and DSPE-PEG
as lipid materials. The protective lipid layer can effectively
reduce the release of the encapsulated drugs in the body
circulation, thus reducing the side effects to normal cells. PEG
on the lipid shell can improve the stability of particles and
prolong their systemic circulation. The lipid–polymer hybrid
nanocarriers with multiple properties of high drug loading,
sequential drug release, improved physiological stability,
prolonged blood circulation, and tumor-specific targeting
are promising for the delivery of multiple drugs in the
treatment of osteosarcoma. In another research, Li and
associates developed a phospholipid polymer hybrid anti-
HER2 nanoparticle (SALI-NP-HER2) loaded with salinomycin
to target HER2-positive breast cancer cells.96 SALI-NP-HER2
inhibited the breast tumor growth more effectively than
nontargeted nanoparticles or salinomycin alone. These re-
search studies encourage further exploration of lipidic nano-
carriers to be envisaged for beneficial prospects in thefield of
cancer treatment.

Biomembrane-Camouflaged Nanocarriers

A novel biomimetic platform of nanocarriers fabricated by
various membranes derived from innate cells (such as tumor
cells, erythrocytes, immunocytes) has drawn enormous at-
tention. Cell-membrane-camouflaged nanocarriers formed
by fusion of biological membrane and nanomaterials retain
both intricate biological functions of cell membranes and
favorable physicochemical characteristics of nanopar-
ticles.97 These innate cell membranes composed of phospho-

lipid, protein, and cholesterol endow nanocarriers with
delivery capability to specific lesions, escaping from protein
adsorption and phagocytosis of a reticuloendothelial system
to realize prolonged circulation in vivo (►Fig. 5).97,98

In recent years, Zhang et al successfully prepared neutro-
phil membrane-coated nanoparticles that inherit the anti-
genic exterior and associated membrane functions of the
source cells and they showsignificant therapeutic efficacy by
ameliorating joint damage and suppressing overall arthritis
severity.99 Pitchaimani et al fabricated liposomes infused
with natural killer (NK) cell membranes for targeted tumor
therapy.100 The results suggested that the biomimetic lip-
osomes that kept NK cell membrane-associated targeting
protein on their surface exhibited a higher affinity toward
cancer than normal cells and enhanced tumor homing
efficiency in vivo with an extended plasma residence time
of 18 hours. Zhou and associates101 fused tumor-derived
extracellular vesicle (TDEV) membranes and phospholipids
to fabricate TDEV hybrid lipid nanovesicles (LEVs). The TDEV
membrane endows LEVs with “homing” targeting ability and
facilitates specific internalization into parent hepatocellular
carcinoma (HCC) cells primarily through a heparan sulfate
proteoglycan-mediated pathway. LEVs can escape from
endosomal degradation and promote the delivery of siRNA
through the Golgi and endoplasmic reticulum to achieve
highly efficient transfection of siRNA. The reported LEVs
enhanced the antitumor efficacy in HCC-bearing mice
through effective gene silencing of CDK1. In addition, Miao
et al constructed elastic poly-(ethylene glycol)-diacrylate
hydrogel nanoparticles coated with red blood cells mem-
brane (RBC-ENPs) which retain the special physiological
properties of RBCs. RBC-ENPs not only exhibit reduced
opsonization in macrophages and ultralong circulation, but
also deform like RBC and achieve excellent diffusion in tumor
extracellular matrix, leading to improved multicellular
spheroid penetration and tumor tissue accumulation. In
vivo results showed that doxorubicin-loaded RBC-ENPs
exhibited superior antitumor efficacy to the first-line che-
motherapeutic drug PEGylated doxorubicin liposomes.102

These biomembrane-camouflaged nanocarriers exhibit
superior efficacy and high safety for disease treatment,
which stands for a promising direction of nanocarriers.

Solid Lipid Nanoparticle and Nanostructured
Lipid Carriers

As an alternative carrier system to traditional colloidal
carriers, solid lipid nanoparticle (SLN) whose particle matrix
consisted of a solid lipid was first introduced by Müller et al
in 1991.103,104However, due to the use of solid lipids, such as
stearic acid and other long-chain saturated fatty acids, SLN
drug loading is unsatisfactory. The second generation of
LNPs, nanostructured lipid carriers (NLCs), was soon devel-
oped to overcome some potential limitations or disadvan-
tages of SLN while maintaining the numerous advantages of
the system (►Fig. 6).103,105 In this kind of nanoparticles, the
matrix is composed of a blend of a solid and a liquid lipid
instead of only one solid lipid.103,106 The lipid materials used

Fig. 4 (A) Lipid–polymer nanocarrier composition. It is formed from a
polymer core shelled with lipids and covered with an outer layer of PEG
with or without targeting molecules. (B) Cryo-TEM images of PLGA160-
Lip-F1275%NP. (C) Cryo-TEM images of PLGA160-Lip-F1275%NP.
(Adapted with permission from Yu et al 2018181.)
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for SLN andNLC production usually resemble the physiologic
lipids.107 Examples include natural and synthetic triglycer-
ides, monoglycerides, diglycerides, natural and synthetic
waxes, and fatty alcohols including their esters and lipid
peptides. In particular, synthetic mono-, di-, and triglycer-
ides are suitable to be used as both individual substances and
mixtures.108 The characterization of the degree of lipid
crystallinity and the modification of the lipid are strongly
correlated with drug incorporation and release rates.105

Different lipid compositions also have an influence on the
size of SLN and NLC particles, which may further affect drug
release rate, biodistribution, and cellular uptake of the nano-
particles.109 The lipid matrix endows NLC a particular nature
which can vary from an imperfect crystallization to an
amorphous structure.110 Therefore, NLC has higher drug
incorporation capacity and stability during storage because
of the special nanostructure compared with SLN.103,104,110

In recent years, due to the biodegradable and biocompati-
ble characteristics,111 SLN and NLC have shown potential
success for several administration routes inmedicine, such as
for oral,112–115 dermal,116–118 parenteral,119 ocular,120,121

pulmonary,122 and brain targeting.7,123–126 SLN and NLC
applied to the skin can improve stability, drug targeting
and penetration, and increase skin hydration compared
with other drug nanocarriers. Therefore, they are considered
as promising DDSs in treating skin disorders.127 Mahmoud
et al developed a promising DDS of oxiconazole nitrate-
loaded SLN topical gel to enhance the drug effectiveness
for the treatment of tinea infection.128 They used stearic acid
to construct oxiconazole nitrate-loaded SLN. The results
revealed that the prepared oxiconazole nitrate SLN had
drug entrapment efficiency ranging from 41.34 to 75.07%
and revealed a decrease of the drug crystallinity in the
prepared SLNs. Clinical study for the prepared oxiconazole
nitrate SLN gel showedbetter patient satisfaction and clinical
improvement compared with the corresponding approved
product.128 For the advantages of compatibility with ocular
tissues and adhesive properties related to nanometric size,
SLN and NLC have shown potential as innovative carriers for
lipophilic drug substances to overcome hurdles in treating
the eye posterior segment.120 Balguri and his group used
Compritol 888 ATO to fabricate indomethacin (IN)-loaded

Fig. 5 (A) Composition of biomembrane-camouflaged nanoparticles. (B) Schematic diagram of red blood cell (RBC) membrane-derived
nanovesicles. (C) Remote-loaded platelet vesicles for targeted drug delivery. (D) Tumor-derived extracellular vesicles with advantage of
“homing” target for tumor delivery. (E) CCM@LM with cancer cell membrane coating showed efficient drug delivery by membrane fusion.
(Adapted with permission from Zhang et al 2017,182 Ying et al 2018,183 Zhou et al 2022,101 and Nie et al 2019184.)
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SLN and NLC to investigate their potential use in topical
ocular delivery.129 The NLC maintained significantly higher
IN concentrations in all ocular tissues tested compared with
the other formulations evaluated in vivo. The results suggest
that themodified SLNandNLC can serve as viable vehicles for
ocular delivery.129

However, it is important to note that the approved
formulations are mainly cosmetic, not pharmaceutical
products.130 Even though the number of research groups
working with SLN and NLC and the number of publications
in the drug delivery field have distinctly increased, few
SLNs and NLCs have reached clinical trials. Some challenges
such as large-scale manufacturing processes, sterilization,
tailoring strategies, stability, and regulatory issues need
to be overcome before SLN or NLC may become commer-
cially available products with approved therapeutic
indications.131,132

Lipid–Inorganic Nanocarriers

Inorganic nanocarriers have been developed rapidly in the
field of biomedicine including cancer imaging and thera-
py,133 biomolecular sensing,134 and gene delivery.135 The
structure of inorganic nanocarriers is always composed of
two regions: a core containing the inorganic component and
a shell region that provides a suitable substrate for the
conjugation of biomacromolecules or protects the core re-
gion from unwanted physicochemical interactions in the
biological microenvironment (►Fig. 7).136

As we all know, the lipid structure can be used as delivery
vehicles for a wide range of drugs and genetic materials
because of their biocompatibility, safety, high drug loading,
and capability to simultaneously carry imaging agents and
ligands as well.137,138 To combine the advantages of both
classes of nanocarriers, a paramount focus has been shifted

Fig. 6 (A) Structures of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). (B) Morphology of various SLNs observed by
TEM. GMP, GMS, and GMB are the SLNs prepared with glycerol monopalmitate (GMP), glycerol monostearate (GMS), and glycerin monobehenate
(GMB), respectively. (C) Endocytosis of SLNs. (Adapted with permission from Guihong et al 2016185.)
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toward an exploration of hybrid lipid–inorganic nanomateri-
als.138 These core–shell type lipid-coated nanoparticle sys-
tems, which provide the most prominent advantages of both
liposomes such as biocompatibility and polymeric/inorganic
nanoparticles such as mechanic properties, offer a new ap-
proach to cancer treatment.139 It was reported bya plethora of
investigational studies that gold (Au)was used as an inorganic
nanomaterial for preparing hybrid lipid–inorganic nanopar-
ticles.138 In a study, Kong and his team developed cationic
lipid-coated gold nanoparticles (L-AuNPs) for efficient intra-
cellular delivery of therapeutic siRNA, in which 3β-[N-(N′,N
′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol),
DOPE, and Chol were used to construct cationic liposome-
encapsulated gold nanoparticles.140 The results showed that
the cationic lipid coating significantly enhanced the cellular
uptake and gene silencing effect of L-AuNPs, and considerably
reduced the cytotoxicity of inorganic materials. In addition,
the potential of semiconducting nanoparticles (quantum dots
[QDs]) in biological imaging applications is better improvedby
combining with the lipid-based nanoparticles. Liu et al syn-
thesized highly luminescent lipophilic CdSe/ZnS core–shell
QDs with an emission maximum at 556nm which were
successfully encapsulated into SLN using the thin-layer ultra-
sonication technique.141 SLN in the nanocomposite particles
improves someproblems associatedwithQDssuch as biocom-
patibility and stability.141 Notably, the composition of the
outer leaflet lipids should be carefully chosen as they can
greatly affect the pharmacokinetics and tissue distribution of
the final nanoparticles.142 Despite significant advances in the
area of laboratory-based applications of core/shell nanopar-

ticles in the biomedical field for diagnosis of diseases and drug
delivery, clinical trial or applications are in the infancy
stage.143

Current Status and Future Perspectives

As one of the most promising drug carriers, lipid-based
nanocarriers have attracted more and more attention in the
pharmaceutical field due to their good biocompatibility, low
immunogenicity, and specific targeting. As far, lipid-based
nanocarriers have been developed rapidly in the fields of
anticancer drugs, gene therapy, vaccine development, and so
on, and the indications of listed products are mostly concen-
trated in the fields of tumor, infection, and analgesia. In
addition to lipid-based nanocarriers, other nanocarriers
have also been widely used in the field of drug delivery due
to their superior delivery ability, for example, mesoporous
silica and self-assembled nanoparticles of organic polymer
materials. However, they also have similar problems to lipid-
based nanocarriers in clinical transformation and industrial
production.

Clinical Translation

Although a large number of basic studies have focused on
optimizing the structure of lipid-based nanocarriers to
enhance targeted delivery, there seems to be difficulties
from basic research to clinical translation. Although lipid-
based nanocarriers have shown superior therapeutic effects
at the cellular level and in animal models, lipid-based

Fig. 7 (A) Structure of lipid-inorganic nanocarriers for drug delivery. (B) Schematic illustration of the construction of GPC@IR783-Fe3O4

nanoparticles. (C) TEM images of GPC@IR783-Fe3O4. (D) In vivo coronal MRI images of BALB/c mice at 0 and 6 hours after intravenous injection of
GPC@IR783-Fe3O4. The region in the red circle was xenograft tumor. (Adapted with permission from Liang et al 2017186.)
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nanocarriers often show side effects in clinical application,
whichmay be due to the differences between species and the
complex physiological environment in human body. Lipid-
based nanocarriers adsorb additional particles in the body,
such as proteins, thereby changing their properties. How to
simulate human environment in vitro and effectively charac-
terize the interaction between lipid-based nanocarriers and
the body is particularly important.

Industrial Production

Different methods are investigated to produce various nano-
carriers. The current approaches of fabricating lipid-based
nanocarriers can be categorized into top-down and bottom-

up methods (►Table 2).137,144 Top-down techniques make
large particles smaller via grinding, spraying, or pyrolysis to
produce nanoparticles, while bottom-up techniques start
with precursors and use deposition techniques or self-as-
sembly of molecules to fabricate nanoparticles.145 At pres-
ent, the preparation of lipid-based nanocarriers mostly
remains at the stage in laboratory. Large-scale production
of lipid-based nanocarriers is a big challenge, with many
problems to be solved, such as particle size distribution, drug
loading rate, encapsulation efficiency, sterility, and stability.
The sterility level is very important for pharmaceutical
preparations, especially for injection. Due to the unique
composition and properties of lipid-based nanocarriers,
the sterilization is still an urgent problem to be solved; it

Table 2 Common methods of fabricating lipid-based nanocarriers

Type of
methods

Method Advantage Disadvantage Application Ref.

Top-down High-pressure
homogenization

• Narrow particle size
distribution

• Low cost
• Scalable

• High energy or
pressure
requirement

• SLN
• NLC
• LDC

112,119,159,160

Media milling • Wider commercial
and industrial
application

• Risks of
contamination

• Abrasion
• Long milling times

• Lipid–
nanoparticle
suspension

144,161–164

Thin film
hydration

• No special equipment
• Simple setup

• Low encapsulation
efficiency

• Poor stability
• Difficult to scale up

• Liposomes 137,165

Bottom-up Self-assembly • Precise
• Low energy

requirements
• The resultant

nanostructures often
show more
comprehensive and
superior properties

• High defects
• Low uniformity
• Low reproducibility

• Lipid–polymer
nanoparticles

• Lipid–inorganic
nanoparticles

164,166–169

Precipitation • Simple setup
• Quick
• No special

equipment

• Nanoparticles
produced are
mostly amorphous

• Mixing conditions
cannot be precisely
controlled

• SLN 144,170–172

Evaporation • Simple setup
• Reproducible
• Economical

• Nanoparticles
produced are mostly
amorphous

• Limited to
compounds which
are soluble in a
volatile organic
solvent

• SLN
• Lipid–polymer

nanoparticles
• Liquid–

crystalline lipid
nanoparticles

144,173–176

Microfluidics • Continuous flow
• Precise control of

reaction time
• High temperature

controllability
• Shorter diffusion

distance in a micro
channel

• Nanoparticles
stacked in the
grooved structures

• Low size
controllability

• Liposomes
• LNP

137,177,178

Abbreviation: LDC, lipid–drug conjugate; NLC, nanostructured lipid carrier; SLN, solid lipid nanoparticle.
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may damage the lipid-based nanocarriers under certain
sterilization conditions.146 Another problem limiting pro-
duction of lipid-based nanocarriers is stability. Lipid-based
nanocarriers may experience fusion, embedding material
escape, lipid oxidation, and many other problems during
storage, resulting in a decline in the therapeutic effect and
even toxic side effects. It is necessary to maintain good
stability of lipid-based nanocarriers throughout the period
from production to application. The application of drying
technology to the prepared lipid-based nanocarriers may be
an effective means to improve the stability of lipid-based
nanocarriers.147 In addition, the lack of adjuvant research
and the special industrial equipment are the factors limiting
the clinical transformation of lipid-based nanocarriers. Fur-
thermore, we also need to establish new regulations to
regulate the development of this industry. Therefore, indus-
trial production of lipid-based nanocarriers is a big challenge
because it involves multistep, multitesting processes and
requires innovation in this field.

Future Perspectives

Studies have shown that reasonable lipid selection can
improve the biological distribution of lipid-based nanocar-
riers and achieve more effective treatment.148 As discussed
above, the development of ionizable lipids hasmade remark-
able progress in RNA therapy. Therefore, searching for novel
lipid materials with biodegradability and multifunctionality
is necessary for the design of lipid-based nanocarriers. In
addition, combining various cell-derived biofilmswith nano-
materials is a promising strategy, because it not only retains
the complex biological functions of biofilms, but also inherits
the physical and chemical properties of nanoparticles. The
improvement of preparation process also promotes the
development of lipid-based nanocarriers, for example,
microfluidics has demonstrated superior advances for the
synthesis of lipid-based structure. The in vivo fate of lipid-
based nanocarriers affects the final therapeutic efficacy.
Developing real-time observation technology to evaluate
the in vivo fate of lipid-based nanocarriers would provide
more effective guidance for the reasonable design of these
delivery systems.

Conclusion

This review was intended to provide an overview of the
progress in the application of lipid-based nanocarriers
from traditional lipid preparations to novel functional lipid
preparations. As the most common class of FDA-approved
nanomedicines,2 lipid-based nanocarriers offermany advan-
tages including biocompatibility, high bioavailability, low
toxicity, targeting, and controlled release ability. Through
structural optimization, surface modification, and material
combination, the safety, encapsulating capacity, stability,
pharmacokinetics, bio-distribution, and therapeutic benefit
of lipid-based nanocarriers can be controlled as a result.
The clinical development of lipid-based nanocarriers has

demonstrated their potential in the treatment of a range of
diseases.

Although there are many approved lipid-based nanocar-
rier therapies in themarket and some are in clinical trials, the
clinical translation of lipid-based nanocarriers still has a long
way to go, including the unsolved problems of lipid-based
nanocarriers themselves, such as seeking more targeted and
the biological characteristics given by lipid carriers in the
body circulation, although these characteristics are not
desired. Furthermore, there are still production obstacles
for clinical translation, including repeatability between
batches, encapsulation efficiency of some candidate drugs,
effective sterilization methods, and storage stability.149

However, it is worth mentioning that translational nano-
medicines have been streamlined for years, perhaps even
decades, due to the tremendous scientific achievements that
have occurred in response to the COVID-19 pandemic.150

Lipid-based nanoparticles have played a pivotal role in the
success of COVID-19 vaccines, which has exciting implica-
tions for the future of nanotechnology-enabled drug and
gene delivery. Therefore, we believe that through the collab-
orative efforts of scientists in different fields, lipid-based
nanocarriers will bring more achievements in the future.
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