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Introduction

For decades, cancer cell lines have been the most common
model used in vitro and have been successful in many areas,
such as exploring the mechanism of cellular signaling path-
ways and researching potential drug targets.1 Nevertheless,
cell line models could not maintain the genetic phenotype
and heterogeneity of the original tumor cells, let alone
reproduce the morphology and function of the original
tumor tissue.2 Genetically engineered mouse models and
patient-derived tumor xenograft (PDX) generated inmice are
important advances in mimicking tumor niche, they can
largely maintain the heterogeneity of the original tumor
and the interaction between tumor and its surrounding
stroma.3However, the establishment of the PDXmodel takes
time, the genetic operation is difficult, and the cost of
molding is expensive, which is not conducive to high-
through drug screening. With a higher rate of success,
shorter cycles, and better cost performance, organoids can

make up for the defects of the above models and they more
closely resemble the original tumor in vivo.

Organoids refer to tissue analogs with a certain spatial
structure formed by the three-dimensional (3D) culture of
adult stem cells or pluripotent stem cells in vitro. They can
simulate the cell compositions, physiological functions, and
genetic characteristics of tissues and organs in vivo to the
greatest extent, as well as can be long-term stable subcul-
ture.4 Organoid culture relies on basement membrane ex-
tract (BME), like Matrigel and collagen. However, these
materials have poor physical and chemical properties, un-
clear composition, and uncontrollable stability between
batches. In contrast, the physical and chemical properties
of engineering matrix materials are relatively controllable,
which is more conducive to organoid culture through ad-
justment and optimization.

Studies have shown that microbiota can reside within
tumor cells and immune cells, impact the state of the tumor
immune microenvironment, and even some microbial
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Abstract Organoids are powerful systems to facilitate the study of individuals’ disorders and
personalized treatments because they mimic the structural and functional character-
istics of organs. However, the full potential of organoids in research has remained
unrealized and the clinical applications have been limited. One of the reasons is
organoids aremost efficient grown in reconstituted extracellular matrix hydrogels from
mouse-derived, whose poorly defined, batch-to-batch variability and immunogenicity.
Another reason is that organoids lack host conditions. As a component of the tumor
microenvironment, microbiota and metabolites can regulate the development and
treatment in several human malignancies. Here, we introduce several engineering
matrix materials and review recent advances in the coculture of organoids with
microbiota and their metabolites. Finally, we discuss current trends and future
possibilities to build more complex cocultures.
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metabolites can also enter the bloodstream and modulate
cancer cells and immune cells.5 The introduction of micro-
biota or microbial metabolites into organoid culture can
better reproduce the tumor microbe environment in vivo
and study the occurrence and development of tumors more
comprehensively. A deeper understanding of themicrobiota-
tumor-host relationship may also provide new prospects for
cancer treatment and contribute to the development of new
anticancer drugs.

In this review, we discuss the application of organoid in
cancer research and highlight several engineering materials
which have biomaterial properties for culturing organoids.
Then, we illustrate the complex relationship between micro-
biota and cancer, and importantly, introduce how organoids
canbeusedinthestudyofmicrobiota-tumor-host interactions.

Organoids as a Model to Study Cancer
As early as 2009, a minigut organoid culture system was
successfully established by adding R-spondin-1, epidermal
growth factor, and Noggin into the Matrigel of mouse Lgr5þ

intestinal stem cells, and intestinal organs with crypt-villus
structures derived from adult stem cells were established
based on this culture system.6 The successful attempt and
application of organoids in normal tissue make organoid
culture technology develop rapidly in the field of tumor
research. At present, various organoids have been success-
fully cultivated, including the intestine, liver, stomach, brain,
kidney, heart, and skin.7–11

The organoid model has a similar tissue arrangement and
spatial structure to the donor organ and can simulate partial
functions of the donor organ. It provides a research platform
more similar to the environment in vivo for tumor research
in vitro. The organoid model has become a new research tool
for scientific problems that are difficult to be solved by
traditionalmodels, such as cancer genetics, cancer processes,
and the activity of antitumor drugs. Organoid technology has
broad application prospects in basic and clinical research,
especially in disease pathology, cell biology, precision medi-
cine, and drug toxicity.12

Organoids allow the long-term expansion of normal and
tumor tissues, and greatly preserve genetic diversity and
morphological stability. There was heterogeneity in organo-
ids cultured from tissues of different patient sources.13 For
the gastrointestinal and colorectal cancer (CRC) organoids,
they show great similarity with the respective biopsies in
morphology, themutational spectrum, geneswith an altered
copy number, and expression patterns of common clinical
diagnosis markers,14 as well as they can be accurately
reproduced in histopathology, hormone receptor status,
and deoxyribonucleic acid (DNA) copy number variations.15

This indicates that organoids can be used to study cell
heterogeneity, construct biobanking, high-throughput drug
screening, drug sensitivity test, etc., laying a foundation for
the further development of personalized therapy and preci-
sion medicine.

Cancer is caused by the gradual accumulation of patho-
genic gene mutations. Therefore, it is important to under-
stand the mutational processes active in tissue homeostasis

and tumorigenesis. Combined with CRISPR-Cas9 and ortho-
topic xenotransplantation inmice, cancer progression can be
successfully regenerated in healthy tissue organoids,16,17 the
pathogenic genes and the mechanism of signaling pathways
related to cancer progression can be explored by studying the
progression of precancerous lesions.18,19 Much effort has
been exerted to model tumorigenesis and progression, to
further elucidate the molecular mechanisms using tumor
organoids.

However, compared with the physiological environment
of normal tissues and organs, organoids still have limitations,
such as a lack of connective tissue, vascular system, and
immune cell. With the gradual development of precision
medicine, it is believed that tumor organoids can be further
developed to simulate tumors in vivo to a greater extent and
become a powerful tool for personalized tumor therapy.

Engineering Materials for Organoid Systems
Current organoid systems mostly rely on intrinsic or extrin-
sic biochemical signals (e.g., growth factors) and cell-cell
interactions to control stem cell fate.20 Organoid culture
methods are complicated by the nearly exclusive depen-
dence on animal-derived hydrogels, includingMatrigel21 and
collagen,22 as the 3D matrix. As a material derived from the
secretion of Engelbreth–Holm–Swarm mouse sarcoma cells
and enriched for biomimetic extracellular matrix (ECM)
proteins, Matrigel is an ill-defined gelatinous basement
membrane protein mixture composed of laminin, collagen
IV, entactin, heparan sulfate, and numerous growth fac-
tors.21 These matrices feature complex and variable compo-
sitions that are not conducive to controlled modifications,
they can cause large batch-to-batch variations in cultured
organoids. There are also potential risks of immunogen23 and
pathogen transfer,24 making them unsuitable for organoid
expansion in downstream clinical applications. In addition,
Matrigel differed greatly from the ECM environment of
normal tissues and organs, which could not provide a
tissue-specific ECM environment for cells.25 Also Matrigel
is of high cost. Based on the above points, researchers aim at
finding a replacement for Matrigel.

Natural polymer-based hydrogels are favored for their
similarity to human ECM and their inherent biological
activity.26 Natural hydrogels are polysaccharides, proteins,
and animal-derivedmixtures. Polysaccharides are thought to
be suitable for creating complex 3D scaffolds with multiple
forms because of their rapid gelation properties and biode-
gradability. The typical polysaccharides are alginate, chito-
san, dextran, cellulose, hyaluronic acid, agarose, pectin,
gelatin, and heparin. Most natural hydrogels lack adequate
mechanical strength, as well as a single type of hydrogel
cannot meet all the requirements of organoids due to the
complex and dynamic microenvironments in different
tissues/organs in vivo. Therefore, many researchers believe
that the combination of natural and synthetic hydrogels is a
better choice for organoid culture.

Engineering synthetic hydrogels are combined with sig-
naling proteins such as integrin-binding small molecules or
bioactive peptides via chemical/enzymatic crosslinking for
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promoting the growth of stem cells and organoids. Synthetic
hydrogels can provide chemically defined matrix, precisely
adjust for matrix properties, and improve organoid culture
efficiency and consistency. Synthetic hydrogels are easily
produced with minimal batch variation by using traditional
syntheticmethods.27 Avariety of tumor organoids have been
successfully cultured in engineering synthetic hydrogels. The
common synthetic polymers for organoid culture are poly-
ethylene glycol, nanocellulose, and other polymer matrices
such as polyisocyanopeptide (PIC).28 The development of
materials capable of spatially and dynamically controlling
organoid microenvironment and surrounding matrix makes
it possible to regulate organoid maturation and function.

Nanocellulose-Based Hydrogel
Nanocellulose is a kind of excellent synthetic ECM suitable
for organoid growth because of its hydrophilic, renewable,
nontoxic, biodegradable, and biocompatible properties, as
well as superior mechanical strength and modifiable sur-
face.29 Cellulose, as the precursor material of cellulose hy-
drogel, are biological macromolecules formed by glucose
molecules connected by β-1,4-glycoside bonds. Cellulose
molecules contain a large number of hydrogen bonds, which
makes it a temperature-sensitive material. At low tempera-
ture, cellulose only form simple entanglement around hy-
drophobic groups without polymerization, but as the
temperature increases, hydrogen bonds are destroyed, and
their hydration gradually loses. The strong hydrophobic
interaction between cellulose molecules leads to the forma-
tion of a 3D network.30

Engineering nanocellulose hydrogel represents a per-
formant and sustainable alternative for the organoid growth,
and contributes to significantly reducing the costs in studies
against diseases of global concern such as cancer. It has been
reported that biologically active plant-based nanocellulose
hydrogels functionalized with Arg-Gly-Asp (RGD) peptides
and glycine supported the mouse intestinal organoids cul-
ture,31 and can also be used for the breast cancer patient-
derived organoids (PDOs) initiation and growth.32

The proliferation and cell differentiation of organoids
mainly depend on whether the hydrogel in which they are
located can reconstruct the microenvironment of the base
membrane.33 Nanocellulose hydrogels are made of 99.9%
water and 0.1% nanocellulose fibers by crosslinking with
similar mechanical properties to the standard animal-based
matrix, but do not provide any biological signal. Interesting-
ly, they can be modified and functionalized due to the
chemically reactive group in surface.

RGD peptides are the adhesive sites, as a fundamental
element in matrices, which can induce cell attachment and
differentiation.34Glycine, a nonpolar amino acid, is dissolved
in the hydrogel to increase its osmolality, once the osmolality
of the matrix is balanced by GLY, small intestinal crypts
progress into cystic organoids. Based on this, organoids
cultured in the RGD-GLY nanocellulose hydrogel sustain
high viability, and even organoids can be formed from single
cells, although the growth rate is considerably slower than
those embedded inMatrigel.31When nanocellulose is blend-

ed with collagen (COL-NC) instead of RGD-GLY, intestinal
crypts can form organoids with cystic structures, intact
lumen, sphere-like morphology, and prominent epithelial
budding.35 PDOs grown in nanocellulose hydrogel synthe-
sized by gelatin show similar proliferation, histopathologic
features, gene expression, and drug responses to original
tumors and PDOs formed in standard basement-membrane
extract.32

Besides the biological signal in hydrogels, the matrix
stiffness also affects the formation and development of
organoids, the mechanical properties of the hydrogels
must resemble the stiffness of organs and tissues.36 The
stiffness of hydrogels is proportional to the type of solids
and affected by the multiple cross-linkers and their concen-
tration.37 For example, the stiffness of COL-NC hydrogel is
90 Pa as same as Matrigel, while COL gels are much lower at
35 Pa35; RGD-TPON hydrogels form a 3D network and are
closer to that of Matrigel than RGD-PON hydrogels, which
offer an optimum bioactive surface and appropriate stiffness
for organoid attachment and growth.37 Usually, nanocellu-
lose hydrogels cross-linked with MgCl2 and CaCl2, require
four timesmoreMg2þ than Ca2þ ions to reach the stiffness of
Matrigel.37 The number of organoids in calcium cross-linked
hydrogels sustains a massive decrease than the hydrogels
cross-linked with Mg2þ ions. It is important to select the
right matrix materials and the type of cross-linkers agent to
achieve the stiffness of a specific organ or tissue.

The modification of nanocellulose by physical, chemical,
or biological methods can obtain suitable properties for
organoid morphogenesis in vitro, which may fill the key
gap of organoid technology lacking matrix glue.

Nonadhesive Alginate Hydrogels
Alginate is Food and Drug Administration-approved polysac-
charide derived from algae and it is a favorable 3D culture
material due to its biocompatibility and ease of manipulation
with gelation and viscoelastic properties. Alginate hydrogels
are structurally similar to the extracellular matrices of living
tissue and can be prepared by a variety of chemical/enzymatic
crosslinking methods.38

Capeling et al39 demonstrated that nonadhesive alginate
hydrogel can support human intestinal organoid (HIO)
growth in vitro. Hydrogels prepared by mixing alginate
and gelatin can also exist in culture medium as suspended
capsules for the cultivation of liver or intestinal organoids,
and themechanical and biological properties of thismaterial
are similar to those of tissue in vivo.40,41 Alginate-grown
HIOs are highly similar to Matrigel-grown HIOs in vitro, and
the differentiation of epithelial cells is indistinguishable
from HIOs grown in Matrigel.39 Organoids cultured in sus-
pended alginate hydrogels are closer to real tissues in vivo, as
suspended capsules can effectively exchange nutrients with
the surrounding medium to support the metabolism of
multicellular clusters.40 HIOs cultured in nonadherent algi-
nate suspended capsules can form a serosal mesothelium
that resembles the human fetal intestine.41

Differentiation of stem cells is regulated by the stiffness of
cell medium substrates.42 Nonalginate hydrogel adjusts the
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mechanical strength of hydrogel by adjusting the proportion
of compound composition and matching the mechanical
strength of corresponding tissues in vivo, so as to be suitable
for the culture of different types of organoids.43 Nonadhesive
alginate hydrogel can also formmicrobeads structure through
microfluidic droplet devices, which can establish a high-
throughput organoid model convent for drug screening.44

Nonadhesive alginate hydrogel becomes a simple system
and conducive to large-scale production due to a lack of
adhesive or biochemical clues. It is a pity that the yield of
alginate-grown organoids was significantly lower than in
Matrigel.39 At the same time, alginate cannot be degraded,
which is not conducive to the recovery and passage of
organoids. However, these shortcomings can be improved
by adhesive/degradable modification. Alginate is also cost-
effective. In conclusion, nonadhesive alginate hydrogel can
be used to support 3D culture systems and advance regener-
ative medicine.

PIC-Based Hydrogels
PIC is a synthetic polymer and nonimmunogenic material, it
can form thermosensitive hydrogels. It is a free-flowing
liquid below 16°C, and the liquid becomes a viscous hydrogel
within minutes when the temperature is above 16°C.45

Like nanocellulose, PIC alonewas not sufficient to support
cell attachment or induce proliferation due to the lack of any
bioactive component. When PIC hydrogels modify the adhe-
sive RGD peptide, it can allow mammary gland organoids
formation from breast fragments or purified single mamma-
ry epithelial cells46; PIC hydrogels can also culture human
liver organoids after modification with laminin-111.47 The
expansion and differentiation rate of organoids in PIC-based
hydrogel is similar to that of Matrigel48; while the potential
for proliferation and differentiation could be maintained for
many generations.47 In addition, the proliferation rate
depends on hardness, and lower hardness is the best condi-
tion for the proliferation of organoids.47 Hydrogel hardness
can also control colony formation efficiency.46

PIC-based hydrogel is a chemically defined and synthetic
hydrogel. The thermally reversible properties make it easier
for cell recovery during organoid culture and make it benefi-
cial for clinical applications such as cell therapy or tissue
engineering. For example, PIC hydrogels have also been
applied in vivo for subcutaneous cell transplantations and
wound healing studies without any adverse effects.49,50

These results highlight that cultured organoid combinations
using well-defined synthetic hydrogels will pave the way for
clinical applications in humans in the near future.

ECM Hydrogels Derived from Decellularized ECM
Decellularized tissue engineering is derived from the con-
cept of tissue engineering. Its strategy is to use decellulari-
zation scaffolds of healthy organs as scaffold materials and
then implant seed cells, such as stem cells, to induce the
formation of organoids in a 3D culture system in vitro.51

Decellularized matrix materials have attracted much atten-
tion in recent years because of their good biocompatibility,
biodegradability, and tissue regeneration ability.52 So far,

reported in the article of the decellularized ECM (dECM)
materials include skin,53muscle,54 cartilage,55 bone,56 blood
vessels,57 lung,58 liver,59 kidney,60 small intestine,61 blad-
der,62 trachea,63 tissue dECM, etc. Some of them have been
used in clinical treatment and have achieved good clinical
efficacy.

Porcine gastric decellularized matrix (SEM) and intestinal
decellularized matrix (IEM) hydrogel can culture gastric and
intestinal (GI) organoids, respectively.64 Hydrogels derived
from healthy porcine liver ECM (PLECM) or human liver ECM
(HLECM) can replace mouse tumor-derived BME for the
culture and expansion of intrahepatic cholangiocyte organo-
ids.65 SEM and IEM hydrogels could effectively cultivate GI
organoids with similar structure and functional character-
istics as Matrigel organoids, even though some indexes were
closer to natural tissues and organs,64 let alone organoids in
dECM hydrogels can be long-term culture, passage, and
freezing storage. LECM hydrogels support the proliferation
of bile duct cell-like organoids and maintain a bile duct cell-
like phenotype, and no species-specific effects were ob-
served between HLECM or PLECM hydrogels.65

Although more and more dECM materials are being used
in clinical therapy, dECM faces many challenges in its appli-
cations, including optimal decellularization schemes, degra-
dation of materials, and regeneration regulation. The
organoids cultured in dECM hydrogel had a low proliferation
rate, and the intestinal villi/crypt structures of IEM are less
than the organoids cultured in Matrigel.64 But these limi-
tations could be optimized by further improving protein
retention other than collagen after decellularization.66 So far,
some cell fragments and nuclear residues still exist in the
prepared dECMmaterials, even the dECMmaterials that have
been commercialized and widely used in clinical practice. At
the same time, nondegradation or incomplete degradation
can hinder the growth of regenerative tissues and organs.

In summary, engineering matrices offer the possibility of
customizing biochemical and mechanical properties accord-
ing to organoid type and application that can support several
different types of organoid cultures. This will become in-
creasingly important once multiple organoid types need to
be grown and maintained in a single cell culture system.
However, these synthetic and highly defined hydrogels are
still in their infancy. They can only be used in certain
applications and are still not a complete replacement for
widely used commercially available natural matrices.

The Microbiota, Microbial Metabolites in Organoids
As understanding of the microbiota grows, we gradually
understand themicrobiota andmicrobial metaboliteswithin
mammalians. According to the classification of natural
attributes, the microbiota within human has been identified
in dozens of bacteria phyla, including Bacteroidetes, Firmi-
cutes, Proteobacteria, Actinobacteria, Verrucomicrobia, Fuso-
bacteria, and so on.67Ninety-eight percent of microbiota can
be classified into the first four groups. Microbiota ferments
dietary fiber and carbohydrates liberated from host mucins,
and produces various fatty acids and amino acids through
different metabolic pathways.68 In addition, some gases and
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nitrogenous compounds are produced, particularly N-
nitroso compounds. These metabolites accumulate in the
bloodstream and have systemic effects on the host both
protective and detrimental.69 Accumulating evidence sug-
gests that microbiota andmicrobial metabolites are involved
in numerous biological processes, such as transformation
process, tumor progression, and the response to anticancer
therapies including immune checkpoint blockade.70–76

To better dissect host-microbiota interactions, it is neces-
sary to adopt models that mimic health and disease features
as closely as possible. Traditional in vitro and in vivo experi-
mentalmodels are difficult to reproduce thehost-microbiota
relationship as represented by humans. Therefore, it is
crucial to establish high-quality experimental models to
understand the crosstalk of host, tumor, microbiota, and
microbial metabolites. At present, many studies have recon-
structed the complex tumor microenvironment in vivo by
fusing immune cells, mesenchymal cells, and endothelial
cells in organoids. If microbiota is fused, the complex physi-
ological and pathological conditions of microbiota-tumor-
host can be better simulated and the influence mechanisms
of microbiota and their metabolites on tumor progression
can be better studied.77

Protumorigenic Microbiota and Microbial Metabolites
Microbiota can regulate some signaling pathways, affect the
invasion and metastasis of tumor cells, and promote the
occurrence and development of tumor. The Wnt/β-catenin
and PI3K/AKTsignaling pathway are involved in awide range
of biological processes, including cell migration, prolifera-
tion, differentiation, apoptosis, and immune response.78,79

The alteration of these signaling pathways is amajor cause of
carcinogenesis. Fusobacterium nucleatum can activate the
Wnt/β-catenin pathway through the upregulation of cyclin-
dependent kinase 5 (Cdk5), and promote tumor cell prolifer-
ation and migration.80 Peptostreptococcus anaerobius could
drive CRC through increasing the gene expression and pro-
tein level of PI3K and AKT.81

Microbial metabolites can also regulate tumor cell growth
and affect the differentiation of immune cells. For example,
formate can drive tumor progression and invasion by trig-
gering AhR signaling, and regulating cancer stemness.82

Butyrate may locally or systemically regulate the balance
of anti-inflammatory and proinflammatory cytokines, and
disrupt the ratio of regulatory T cells and Thelper17 cell
subsets.83,84 The high concentrations of secondary bile acids
can be produced with gut microbiota enzyme and induce
CRC.85,86 And gut microbiota can use bile acids as a messen-
ger to alter immune function and influence antitumor
immunosurveillance.87 Polyamines are mainly metabolized
from arginine in host tissues, its synthesis also occurs in gut
microbiota.88 Polyamines are involved in a range of essential
physiological functions, such as the maintenance of the
structural integrity of membranes and nucleic acids, gene
regulation, and translation.89,90 Enterotoxigenic Bacteroides
fragilis can upregulate polyamine production by host cells,90

and affect the activity of various signaling pathways in tumor
cells.91

Antitumorigenic Microbiota and Microbial Metabolites
In addition to promoting tumor, most microbiota and their
metabolites also inhibit tumor growth. A cocktail of Lacto-
bacillus spp inhibits tumor cell growth via downregulating
Wnt/β-catenin target genes.92 Motility-associated killing
factor A (MakA), a cytotoxin from Vibrio cholera, can induce
cell apoptosis in several cancer cell lines,93 like ileocecal
cancer and colon carcinoma, and it can inhibit β-catenin-
mediated tumor cell proliferation and reduce tumor burden
via altering β-catenin integrity. Leuconostoc mesenteroides,
isolated from dairy products, induced apoptosis and DNA
fragmentation in a CRC cell line, as well as downregulated
AKT in cells treated with bacterial conditioned media.94

Some microbiota can induce tumor cells death by affecting
the redox balance of tumor cells and upregulating genes
related to oxidative stress response.95 Indoles and their
derivatives can regulate the differentiation of immune cells
and increase the tolerance of the immune system.96,97

Immune checkpoint block (ICB)-mediated antitumor
responses mainly depend on cytotoxic T cells capable of
recognizing and killing tumor cells. ICB has greatly improved
the clinical efficacyofmalignant tumor therapy and hasgreat
potential to be explored.98,99 However, the immune re-
sponse efficiency of ICB therapy is at a low level due to
individual differences of patients.100 It is necessary to find
newways to improve ICB response. More and more evidence
indicate microbiota can improve the efficiency of ICB treat-
ment efficiency.101,102 For example, different types of Bac-
teroides may affect anticancer immunotherapy with CTLA-4
blockade.103 Bifidobacterium and Akkermansia muciniphila
can promote antitumor immunity and improve the thera-
peutic effect of anti-PD-L1 and anti-PD-1.71,104 Microbial
metabolites can also enhance the antitumor immune re-
sponse and improve the immunotherapy response, such as
inosine, polypeptide, and L-arginine.105–108

Coculture of Microbiota and Organoids
At present, most research models of microbiota are based on
germ-freemice,109which have two defects: first, the cells and
microbiota of thismodel are all frommice, which are different
from human species; Second, due to the extremely complex
microbiota and its effects, mouse models cannot be finely
controlled in the experimental process. Therefore, it is difficult
to obtain more detailed and in-depth results of mechanism
properties. Organoids canbeused toestablish invitro research
models of complex microbial communities in direct contact
with the mucus layer of human intestinal cells, complement-
ing thesignificantdeficiencies ofmousemodels in experimen-
tal control, scalability, and reproducibility of interactions
between the human gut and host-specific symbiotic micro-
biota. It is extremely valuable for further study of the interac-
tion between host and microbiota.

The coculture technology of organoids with microbiota
has been used widely and made substantial progress in
disease research. Engevik et al110 found colony-stimulating
factor (CSF) induce interleukin-10 expression in dendritic
cells and regulate the host immune system by coculture of
Lactobacillus reuteri, organoids, and dendritic cells. A
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genotoxic polyacetyl-1-peptide (colibactin) in PPKSþ Escher-
ichia coli that causes DNA double-strand cross-linking and
damage which is associated with CRC,111 this study provides
important evidence for further treatment and research of CRC
through studying the direct effect and causal relationship
between gut microbiota genotoxic substances and oncogene
mutations. To investigate how the tumor-resident microbiota
influence the tumor cell activity, researchers established a
coculture system of organoids with microbiota,112 organoids
imaging results showed that microbiota help tumor cells
survive in the circulatory system by regulating the cytoskele-
ton, thereby promoting tumor metastasis.

Systematic protocols have been developed to guide the
coculture of intestinal organoids with microbiota.113 Orga-
noids can form lumens that represent the intestinal lumen,
microbiota was injected into lumen by microinjection and
represent faithfully the microbiota–epithelium orientation.
This method was successfully used to inoculate human
gastric organs with Helicobacter pylori.114 Microinjection is
a technical skill, it will be failed if the organoids are too small,
too differentiated, too dense, or the microbes are too over-
grown, and most of the intestinal organoids have to be as
similar in size as possible. This operation also does not allow
for high-throughput scaling, one of the advantages is that it is
more in line with the actual physiological state of the body.

Importantly, organoids coculture with single microbiota
does not take into account the overall complexity of the gut
microbiota ecosystem, such as complex interactions with
immune compartments. The intestinal organoids and
organs-on-chips115 approach has made significant progress
and can achieve long-term coculture with a variety of micro-
biota species. Jalili-Firoozinezhad et al116 developed a two-
channel microfluidic organoid chip device, Intestine Chip
System, thesystemhas thecapabilityofmaintainingacomplex
microbiota community in coculture with human intestinal
epithelial cells, and to study host-microbiota interactions
through direct contact with human intestinal epithelial cells
via an in vitro covering simulated mucous layer. Compared
with aerobic culture conditions, microfluidic chip-controlled
chamber of oxygen gradient increased the intestinal barrier
function and provides maintenance of microbiota diversity
related to physiological levels, including more than 200 from
11 different genera classification of obligate anaerobic bacte-
ria. Microfluidic organoid chip can be used as a tool to develop
microbiota-related therapies, probiotics, and nutrients.

Conclusion

As 3D micro-organs cultivated in vitro, organoids have the
potential to construct human organ diseasemodels. They are
recognized as important tools in biological research and can
make up for the shortcomings of cell lines and animalmodels
in clinical application. Organoid research is still in its infancy
and there are many problems to be solved. For example,
animal-derived matrix materials used to support organoid
growth are not conducive to organoid expansion in down-
stream clinical applications due to their complex and vari-
able components, differences between batches, and risks of

immunogen and pathogen transfer. Engineering hydrogels
can be synthesized using traditional methods to provide
chemically well-defined matrices that can be precisely tuned
to improve organoid culture efficiency and consistency. Com-
pared with Matrigel, the engineering materials currently
developed have a slightly lower efficiency in organoid culture,
but they still have broad development and application
prospects.

Microbiota and microbial metabolites play a key role in
human health and disease. Different types of microbiota and
microbial metabolites play different roles in the occurrence
and development of tumors, immunology, and cancer thera-
py. But it is still having a lot to learn for the internal
mechanism and how to adjust the microbiota to enhance
response to cancer immunotherapy. Traditional experimen-
tal models cannot well simulate the relationship between
host and microbiota, so it is difficult to obtain more detailed
and in-depth results of mechanism properties. To better
analyze the host-microbiota interaction, microbiota and
organoid technology can be combined to reconstruct the
complex tumor microenvironment in vivo, providing new
details for studying the occurrence and development mech-
anism of various diseases including cancers. At present, the
application ofmicrobiota and organoid coculture technology
has played an important role in the study of some diseases,
opening up new possibilities for understanding and treating
diseases. However, this coculture model is still in its infancy
and there ismuchmore space for improvement in the future.
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