A Case of Pseudoaneurysm of the Superficial Temporal Artery Causing a Massive **Subcutaneous Hematoma after Craniotomy** Masaki Tatano¹ Seiya Hayashi¹ Masatoshi Yunoki¹ Michiari Umakoshi¹ Koji Hirashita¹ Kimihiro Yoshino¹ ¹Department of Neurosurgery, Kagawa Rosai Hospital, Marugame, Kagaw, Japan AJNS 2022;17:672-675. Address for correspondence Masatoshi Yunoki, MD, PhD, Department of Neurosurgery, Kagawa Rosai Hospital, 3-3-1 Joto-cho, Marugame, Kagaw, 763-8502, Japan (e-mail: yunomasato@yahoo.co.jp). #### **Abstract** ## **Keywords** - craniotomy - ► hematoma - pseudoaneurysm - superficial temporal artery We present a case of a ruptured pseudoaneurysm of the superficial temporal artery (STA) after surgery for intracranial hemorrhage. To our knowledge, only three similar cases have been reported. A 47-year-old man underwent left frontal craniotomy for a left frontal subcortical hematoma. The left STA was not identified during the surgery, and no STA bleeding was observed. The postoperative course was uneventful for 20 days, until the patient experienced a left-side headache and noticed a subcutaneous mass. The mass increase in size within 1 hour and arterial hemorrhage was observed through a tear in the wound. Findings on subsequent contrast computed tomography were consistent with a ruptured pseudoaneurysm arising from the left STA. Emergency evacuation of the hematoma and STA ligation were performed. Pathological findings were consistent with a pseudoaneurysm. STA pseudoaneurysms occasionally grow rapidly and can cause massive hematoma. Surgeons should carefully monitor for evidence of a pseudoaneurysm after craniotomy, even in the absence of intraoperative bleeding from the STA. ### Introduction A superficial temporal artery (STA) pseudoaneurysm after a craniotomy is rare, with only 16 cases reported in the literature -the majority of these were found in subcutaneous pulsatile and painless masses. 1-16 Herein, we report a case of an STA pseudoaneurysm with severe subcutaneous bleeding after craniotomy, and provide a review of the literature. To our knowledge, only three similar cases have been reported.^{6,9,10} #### **Case History** A 47-year-old man with a history of hypertension was brought to the emergency department of our hospital due to sudden onset of headache, right hemiparesis, and consciousness disturbance (20 JCS: Japan Coma Scale). On arrival, the head computed tomography (CT) scan showed a left subcortical hemorrhage (>Fig. 1A). Craniotomy was performed on the same day. For the first surgery, a coronal skin incision was made, and a right frontal craniotomy was performed. A microscope was introduced to aid removal of the hematoma located directly below the craniotomy. For skin closure, a 3-0 absorbent thread (Vicryl plus 3.0; Ethicon Co., Somerville, New Jersey, USA) was used subcutaneously, while a stapler was used superficially. During the period from skin incision to closure, the left STA was preserved posterior to the skin incision, and the surgery was completed without damage to the STA. article published online December 15, 2022 DOI https://doi.org/ 10.1055/s-0042-1757222. ISSN 2248-9614. © 2022. Asian Congress of Neurological Surgeons. All rights reserved. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/ licenses/by-nc-nd/4.0/) Thieme Medical and Scientific Publishers Pvt. Ltd., A-12, 2nd Floor, Sector 2, Noida-201301 UP, India Fig. 1 (A) Axial image of head computed tomography on admission. Intracranial hematoma was detected in the left frontal lobe. (B, C) Photographs before the second surgery. Severe subcutaneous swelling was identified in the left frontal region (♠). The superficial temporal artery (STA) was palpable on the occipital side of the skin incision (—). A pulsative portion of the subcutaneous mass was identified on the frontal side of the STA (\triangle). A pulsatile portion of the mass was identified on the frontal side of the STA. The postoperative course was good, with mild paralysis of the right upper and lower limbs and clear consciousness. Normal blood pressure was maintained by oral administration of a calcium channel blocker. The surgical wound was in good condition, and the hooks were removed on the 7th postoperative day. On the 20th day after surgery, the patient noted pain and swelling of the wound, despite no prior reports of wound swelling. The swelling gradually worsened within 1 hour, the sutures tore, and bleeding was observed. An emergency head CT scan (plain and contrast) revealed a $13 \times 21 \times 22$ mm aneurysm in the parietal branch of the left STA with a marked subcutaneous hematoma (Fig. 1B,C). Because the patient experienced a severe headache, emergency surgery was performed. There were no abnormal findings on preoperative blood tests, including blood coagulation and fibrinolysis function. At surgery, the STA was palpable caudal to the prior skin incision (Fig. 2A). Additionally, a pulsating spot was observed on the frontal side of the STA within the area of severe head swelling (Fig. 2A,B). This area was considered to be a pseudoaneurysm (Fig. 2A). The skin incision was extended caudally, and the STA was identified. During removal of as much of the hematoma as possible, arterial bleeding was observed from the hematoma area. Thus, the secured STA was temporarily blocked and the prior skin incision was fully opened to sufficiently remove the hematoma. The STA was then traced distally, and was found to be disrupted within the hematoma, with the distal end identified nearby. Both ends were collected for pathology and ligated with silk thread. Pathology showed true blood vessels with elastic fibers (Fig. 3A,B). Membranous tissue with calcification consisting of some fibrous tissue was also observed (Fig. 3A,B). The area was diagnosed as a pseudoaneurysm because elastic fibers were not identified. After the second surgery, the patient's headache improved, and the hooks were removed on the 7th day. There was no recurrence of subcutaneous swelling. The patient was transferred to a rehabilitation hospital at 14 days after the second surgery. Fig. 2 An axial (A) and coronal (B) view of gadolinium-enhanced computed tomography (CT) before the second surgery showing a left subcutaneous hematoma (↓). A pool of contrast medium (⇩) was identified in the hematoma, which was consistent with a pseudoaneurysm. (C) Three-dimensional CT angiography revealed a pool of contrast medium arising from the left superficial temporal artery. Fig. 3 Histopathological examination of the surgical specimen. (A) Hematoxylin and eosin staining ($\times 40$ magnification). (B) Elastica van Gieson staining ($\times 40$ magnification). In the true vessel wall, internal elastic fibers were identified by Elastica van Gieson staining (A). The area of the membranous tissue was diagnosed as a pseudoaneurysm because no elastic fibers were identified (\triangle). #### **Discussion** In head and neck aneurysms, the frequency of STA pseudoaneurysms was reported as 0.5 to 2.5%, 17 of which approximately 75% were caused by blunt head trauma. 18 This is because the STA runs just below the scalp, on top of the hard skull, making it vulnerable to trauma. 17,18 Damage to the arterial wall can result in hematoma formation beneath the scalp, while in some cases blood flow may remain between the hematoma cavity and the vessel lumen. In this condition, the hematoma is absorbed and a fibrous coating develops around it, forming a pseudoaneurysm. 17,18 Histological findings in our case showed evidence of true blood vessels and fibrous tissue, without elastic fibers, in the excised area, which was consistent with a pseudoaneurysm. Table 1 Reported cases of pseudoaneurysm of the STA after craniotomy | Author | Sex | Age | Cause of craniotomy | Cause of STA injury | Duration
(days) ^a | Rupture of pseudoaneurysm | Treatment | |---|---------|-------|--|---|---------------------------------|---------------------------|--| | Shimoda et al (1988) ¹¹ | Male | 17 yo | Removal of intracranial hematoma | Unknown | 40 | No | Embolization | | Fernández-Portales
et al (1999) ⁴ | Male | 51 yo | Clipping for ruptured aneurysm | Pin head holder | 35 | + | Extirpation | | Tsutsumi et al (2000) ¹³ | Male | 48 yo | Clipping for ruptured aneurysm | Possibly suture needle | 40 | No | Extirpation | | Lee et al (2002) ⁸ | Male | 52 yo | Clipping for ruptured aneurysm | Possibly suture needle | 110 | No | Extirpation | | Hakan et al (2011) ⁵ | Female | 58 yo | Clipping for ruptured aneurysm | Unknown | 4 d | No | Extirpation | | Bobinski et al (2004) ² | Male | 74 yo | Clipping for ruptured aneurysm | Unknown | 17 | No | Injection of throm-
bin glue | | Wang et al (2011) ¹⁴ | Male | 28 yo | Clipping for ruptured aneurysm | Possibly suture needle | 25 | No | Extirpation | | Terterov et al (2012) ¹² | Male | 31 yo | Clipping for ruptured aneurysm | Possibly suture
needle (triple
H) | 22 | No | Coil embolization
andsealed with liq-
uid Onyx | | Kobayashi et al (2013) ⁷ | Female | 41 yo | Microvascular
decompression | Pin head holder | 71 | No | Extirpation | | Honda et al (2013) ⁶ | Male | 57 yo | Clipping for ruptured aneurysm | Possibly suture
needle (triple
H) | 1 | + | Emergency surgery | | Wright et al (2015) ¹⁵ | Male | 78 yo | Removal of meningioma | Unknown | 21 | No | Coiling | | Madhusudan et al (2015) ⁹ | Male | 57 yo | Removal of high-grade
glioma | Possibly suture needle (vasculitis) | 8 | + | Emergency surgery | | Anania et al (2018) ¹ | Unknown | 3 wo | Surgery for craniosynostosis | Unknown | 17 | No | Extirpation | | Entezami et al (2019) ³ | Male | 83 yo | Removal of high-grade
glioma | Unknown | Na | + | Embolized and surgery | | Zheng et al (2021) ¹⁶ | Male | 36 yo | Removal of epidural
hematoma | Fish hook
retractor | 1 | No | Extirpation | | Shields et al (2021) ¹⁰ | Male | 38 yo | Surgery for cerebrospi-
nal fluid leak repair | Unknown | 14 | + | Emergency surgery | | Present case | Male | 47 yo | Removal of intracranial hematoma | Unknown | 20 | + | Emergency surgery | Abbreviations: STA, superficial temporal artery; wo, weeks old; yo, years old. ^aThe duration until the subcutaneous mass was identified after surgery. Reports of pseudoaneurysms after craniotomy are rare, with only 16 cases in the literature (►Table 1). 1-16 Reported causes of STA damage include subcutaneous suture needles, hook retractor, or three-point pin fixators. 6-8,13,16 Systemic diseases including hemophilia or vasculitis, and background such as triple H therapy after subarachnoid hemorrhage, are also risk factors for pseudoaneurysms.^{6,9,11,12} Furthermore, even if there is only endothelial damage without bleeding, surgical manipulation or electrocoagulation may lead to formation of fusiform dilatation and subsequent minor bleeding, resulting in pseudoaneurysm formation. 1,5,8,13 In our case, the STA was not injured during surgery and was clearly distant from the site of the Mayfield 3-point pin fixator. Thus, the pseudoaneurysm in present case may have resulted from microtrauma to the intima caused by surgical manipulation or electrocautery.^{1,3} Alternatively, the STA may have been injured during subcutaneous closure, resulting in a small unnoticed bleed that caused the pseudoaneurysm. 1,5,8,13 The risk factors and probability of pseudoaneurysm rupture are unknown. Nevertheless, massive bleeding was reported in 4 of 16 cases of pseudoaneurysm after craniotomy (25%), ^{6,9,10} which is not uncommon. In these four cases of massive hemorrhage, including the present case, no obvious pulsatile mass was observed prior to the pseudoaneurysm rupture. However, this may be because careful monitoring for pseudoaneurysm formation was not performed after the first surgery. Thus, careful monitoring of the wound after craniotomy may allow for earlier and less invasive treatment. #### **Conclusion** Pseudoaneurysms of the STA after craniotomy may result in a severe subcutaneous hematoma that requires surgical removal. After craniotomy, the patient should be carefully monitored for the appearance of pseudoaneurysms in the surgical wound, even if there is no intraoperative bleeding from the STA. Conflicts of Interest None declared. #### **Ethical Approval** The report was approved by the institutional review board of Kagawa Rosai Hospital (R2-9). The patient provided written informed consent for this case report. #### References 1 Anania P, Pacetti M, Ravegnani M, Pavanello M, Piatelli G, Consales A. Iatrogenic pseudoaneurysm of superficial temporal artery after surgery for scaphocephaly: case report and review of literature. World Neurosurg 2018;111:60-62 - 2 Bobinski L, Boström S, Hillman J, Theodorsson A. Postoperative pseudoaneurysm of the superficial temporal artery (S.T.A.) treated with Thrombostat (thrombin glue) injection. Acta Neurochir (Wien) 2004;146(09):1039-1041, discussion 1041 - 3 Entezami P, Dalfino J, O'Brien MW, Paul A. Endovascular embolisation of an iatrogenic superficial temporal artery pseudoaneurysm using liquid embolic. BMJ Case Rep 2019;12(01):e227742 - 4 Fernández-Portales I, Cabezudo JM, Lorenzana L, Gómez L, Porras L, Rodríguez JA. Traumatic aneurysm of the superficial temporal artery as a complication of pin-type head-holder device. Case report. Surg Neurol 1999;52(04):400-403 - 5 Hakan T, Ersahin M, Somay H, Aker F. Pseudoaneurysm of the superficial temporal artery following revision of a middle cerebral artery aneurysm clipping: case report and review of the literature. Turk Neurosurg 2011;21(03):430-434 - 6 Honda M, Anda T, Ishihara T. Ruptured pseudoaneurysm of the superficial temporal artery after craniotomy. Neurol India 2013; 61(06):698-699 - 7 Kobayashi H, Abe H, Shigemori Y, et al. A case of pseudoaneurysm of superficial temporal artery after craniotomy. Current Pract Neurosurg 2013;23:908-912 - 8 Lee GY, Daniel RT, Halcrow S. Postoperative pseudoaneurysm of the superficial temporal artery. J Neurol Neurosurg Psychiatry 2002;72(04):553-554 - 9 Madhusudan HV, Krishnamoorthy N, Suresh PK, Subramaniam V. Superficial temporal artery pseudoaneurysm presenting as extradural hematoma: a case report and review of literature. Asian J Neurosurg 2015;10(02):63-65 - 10 Shields J, Robichaux J, Morrow K, Crutcher C, Tender G. Rupture of a superficial temporal artery pseudoaneurysm following craniotomy. J Surg Case Rep 2021;2021(09):b379 - 11 Shimoda M, Ikeda A, Sato O, Watabe T. [A case of multiple superficial temporal artery pseudoaneurysms following craniotomy]. No Shinkei Geka 1988;16(06):797-800 - 12 Terterov S, McLaughlin N, Martin NA. Postcraniotomy superficial temporal artery pseudoaneurysm in the setting of triple H therapy: a case report and literature review. Surg Neurol Int 2012:3:139 - 13 Tsutsumi M, Kawano T, Kawaguchi T, Kaneko Y, Ooigawa H. Pseudoaneurysm of the superficial temporal artery following craniotomy-case report. Neurol Med Chir (Tokyo) 2000;40(05): - 14 Wang X, Chen JX, You C. latrogenic false aneurysm caused by surgery of a traumatic intracranial false aneurysm. Neurol India 2011;59(05):753-755 - 15 Wright CH, Wright J, Badjatiya A, Manjila S, Reed S, Geertman R. Ultrasound guided local endovascular coiling of an iatrogenic superficial temporal artery pseudoaneurysm. J Cerebrovasc Endovasc Neurosurg 2015;17(04):313-317 - 16 Zheng HX, Lee YL, Chen GY, Hung YC. Iatrogenic pseudoaneurysm of the superficial temporal artery following craniectomy from a scalp hook retractor penetrating injury: case report and literature review. Int J Surg Case Rep 2021;84:106076 - 17 Fujii S, Kajikawa H, Yamamura K, Wada M, Shimamoto F. [Spontaneous dissecting aneurysm of the superficial temporal artery: a case report]. No Shinkei Geka 1995;23(09):797-800 - 18 Khandelwal P, Akkara F, Dhupar V, Louis A. Traumatic pseudoaneurysm of the superficial temporal artery. Natl J Maxillofac Surg 2018;9(01):74-77