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History of Stem Cells

In the early 1960s, a notable scientific advancement emerged
from studies on mice bone marrow transplantation. This
research opened the door formodern stem cell biology and is
primarily attributed to James Till and Ernest McCulloch.

However, the groundwork for the adult stem cell field was
established earlier, in 1953, by two prominent Canadian
scientists, Yves Clermont and Charles Philippe Leblond.1

Stem cells have been around since before humans existed.
They can be found in both animals and plants. Stem cells in
plants are unique cells that are located in the meristematic
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Abstract The effective treatment of various diseases requires not only medications but also
precise deliverymethods to the body and specific organs. In this regard, radiology plays
a crucial role, acting as the eyes of physicians. In contrast, interventional radiology
serves as its hands, acting as one of the most effective drug delivery systems. Among
interventional radiology disciplines, arterial drug delivery through arteries holds
paramount importance as organs primarily receive nourishment directly from them.
Furthermore, regenerative medicine is a burgeoning field dedicated to repairing
diverse body tissues without relying on pharmaceutical drugs. Stem cells, inherent
in various parts of our bodies, are vital for tissue regeneration and reconstruction.
Depending on the treatment approach, stem cells can be sourced from the patient’s
body (autologous) or another individual (allogeneic). There exist various types of stem
cells across species, with regenerative properties observed in animals and even plants.
However, targeted cell therapy is preferred over systematic injections throughout the
body for better efficacy. This article aims to familiarize interventionalists with stem
cells and provide them with a clear and helpful explanation of their functions,
mechanisms of action, different sources, and other relevant aspects. This will help
them select the most appropriate cells for their therapeutic purposes. By comprehen-
sively understanding the significance of stem cells in interventional radiology, we can
implement optimal methodologies to address diverse medical conditions efficiently.
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tissues. They supply the plant with a constant stream of
precursor cells capable of differentiating into various tissues,
ensuring the plant’s health and vigour.2

Regenerative medicine is an emerging scientific field
dedicated to repairing damaged body parts using biological
processes. This ability to regenerate extends beyond humans
and is observed in various animals, such as hydras and
planarian flatworms.3,4

Advanced mammals, higher in the vertebrate hierarchy,
often lose regeneration abilities, limited mainly to wound
healing. Yet, complete organ replacement remains possible.
For example, in humans, a portion of the liver can regenerate
fully, and elk antlers can completely regrow after shedding.4

During the initial stages of stem cell discovery, research-
ers noticed that in cases of leukemia, the bone marrow
produced both diseased and healthy cells. Since it was not
practical to selectively remove only the diseased cells, they
resorted to eliminating all cells through chemotherapy.
Afterwards, stem cells were introduced to facilitate the
production of healthy cells.5

To understand this better, imagine a scenariowhere a city
has both sick and healthy individuals. To address this issue,
the entire population is cleared out. Eventually, fertile fami-
lies are resettled to start the production of a new, healthy
generation.

What is Stem Cell? The Trajectory of Stem
Cells in the Human Body: From Birth to
Maturity and Laboratory

A stem cell is a type of cell that remains undifferentiated. To
be classified as a stem cell, it must exhibit two essential
characteristics. First, it must have the capability of self-
renewal, allowing it to replicate into additional cells with a
similar unspecialized nature. Second, it must possess the
capacity to differentiate into various specialized cell types
and form organs.6

Totipotent cells possess the extraordinary ability to ma-
ture into any cell type within the body, which is crucial for
both fetal and placental development. On the other hand,
pluripotent cells, though versatile, cannot give rise to a fully
formed organism. They, however, hold the potential to
develop into approximately 200 different cell types in the
body.7

Cell differentiation is the intricate process where stem
cells develop into specialized cells. This process occurs
naturally during embryonic development. Initially, stem
cells are totipotent, which can differentiate into all cell types
of the body. As differentiation progresses, their potency
decreases, and they become more specialized. The fate of
pluripotent cells, which are directed toward one of the
endoderm, mesoderm, or ectoderm as three germ layers, is
determined by factors such as their location within the
embryo and chemical signals. Once a stem cell commits to
a specific germ layer, it becomesmultipotent,meaning that it
can generate various cell types within that layer. During
differentiation, cells undergo genetic and physical trans-
formations, gradually losing potency until they become

unipotent and can only produce one cell type. Within each
germ layer, pluripotent cells possess unique differentiation
potential. Ectoderm cells, derived from the outermost layer,
can differentiate between skin cells and neurons. Mesoderm
cells, originating from the middle layer, possess the capacity
to transform intomuscle cells, like those found in theheart or
skeletal system, as well as red blood cells, among others.
Endoderm cells, originating from the innermost layer, can
develop into various organ cells, such as those found in the
lungs, thyroid, or pancreas.8,9

Cell differentiation, a crucial process during embryonic
development, sees stem cells transform into specialized cells.
Stem cells, initially totipotent, can become any cell type. As
differentiation progresses, they become more specialized.
Pluripotent cells commit to one of the endoderm,mesoderm,
or ectoderm—guided by location and chemical signals. Once
committed, they become multipotent, capable of generating
various cell types within that layer. Throughout differentia-
tion, cells undergo genetic and physical changes until be-
coming unipotent, producing only one cell type. Endoderm
cells are used to connect various organ cells like those in the
lungs or pancreas, and ectoderm cells give rise to skin cells
and neurons, mesoderm cells to muscle cells, and red blood
cells.10,11

In addition to induced pluripotent stem (iPS), totipotent,
multipotent, and pluripotent adult stem cells reside in body
tissues and are differentiated exclusively into the tissue they
inhabit. For instance, muscle tissue stem cells specialize
solely in muscle differentiation12 (►Fig. 1).

What are Autologous and Allogenic? Which
One is the Choice?

Autologous mesenchymal stem cells (MSCs) are easily
obtainable and typically evade immune rejection postinfu-
sion; however, their isolation, in vitro expansion, and release
processes are time-consuming, and there is a risk of systemic
diseases in patient-derived autologousMSCs. AllogenicMSCs
present benefits such as donor variability, multiple origins,
minimal immune reactivity, and easy accessibility. However,
they could trigger an immune reaction and potentially evoke
immune memory in specific situations.13–15

Despite the challenges, allogeneic MSC therapy is on
the rise in clinical translation, deemed clinically safe and
effective, with strategies suggested to mitigate potential
antidonor immune responses, including the use of immuno-
suppressive drugs as proposed by Lohan et al. However, the
ongoing debate surrounding the risks and limitations of
autologous versus allogeneic MSCs, including donor-donor
heterogeneity, underscores the need for further research and
discussion in all clinical settings.16

The versatility and diverse functions of MSCs present
potential challenges for ensuring the effectiveness and safety
of different cell therapies in clinical settings. Understanding
how MSC biological properties interact with their microen-
vironment is crucial for grasping their role in medical
practice. However, clinical data do not definitively determine
whether autologous or allogeneic MSCs offer superior
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therapeutic benefits. To ensure safe and effective MSC trans-
plant therapies, personalized approaches, including donor-
controlled practices and analysis of disease-associated
genetic variations in MSCs, are recommended.17

Mechanism of Action

Multifaceted interaction: The therapeutic effect of MSCs is
based on their regenerative capabilities and capacity to
regulate the immune system. These effects are frommultiple
mechanisms, as MSCs impact various tissue and immune
cells through diverse factors and processes.18

Human MSCs (hMSCs) demonstrate strong immune reg-
ulatory capabilities, rendering them appealing for treating
human diseases characterized by inflammation and tissue
injury. All the specific mechanisms of MSCs vary depending
on the environmental context and the type of repair process
needed. Significantly, observations have demonstrated that
hMSCs can ameliorate graft-versus-host disease (GVHD)
without causing adverse effects, enhancing their appeal as
treatment options for a spectrum of diseases. The proposi-
tion that a primary mechanism of hMSC involves the stimu-
lation of human regulatory T cells appears credible.19

The immunoregulating characteristics of MSCs are im-
pacted by environmental factors, resulting in a complex
interplay that determines their therapeutic effects. MSCs
can adopt both anti-inflammatory and proinflammatory
phenotypes depending on local cues within tissues. Their
reaction to interferon-γ and other inflammatory factors and
stimulation of Toll-like receptor (TLR) signaling can influence
their secretome composition and function. Notably, MSCs
can promote the differentiation of T cells into regulatory or
proinflammatory subsets based on cytokine levels like trans-
forming growth factor (TGF)-β and interleukin-6.20

Moreover, MSCs can adopt immunosuppressive pheno-
types when exposed to various TLR ligands, thereby influ-
encing their interactions with immune cells and therapeutic

effectiveness. The divergent outcomes seen in MSC-based
therapies in autoimmune or GVHD models may stem from
the polarization of MSCs in response to changes in the
microenvironment. These discoveries emphasize the signifi-
cance of comprehending the dynamic interplay between
MSCs and their surroundings to enhance their therapeutic
efficacy.20,21

Sources of Stem Cells: Where and How Can
We Find Them in the Body?

Depending on the intended purpose for using stem cells,
factors such as cell availability, the targeted organ, etc.,
researchers, especially interventional radiologists, should
select the most appropriate source of cells. When categoriz-
ing stem cell reservoirs in humans, various sources are
considered, including embryonic, fetal, infant, and adult
origins (►Fig. 2).22

In the following sections of the article, we will examine
the mentioned cellular sources.

Umbilical Cord
In the past, during childbirth, the umbilical cord and its pair
were discarded. Still, gradually, with advances in medical
knowledge, it was discovered that the umbilical cord and its
pair are rich in pluripotent and hematopoietic stem cells.23

Recent research has underscored the potential therapeu-
tic applications of umbilical cord blood in treating disorders
related to bone marrow and congenital metabolic
issues. Unlike bone marrow, umbilical cord blood does
not necessitate precise human leukocyte antigen tissue
matching, exhibits lower rates of GVHD, and can be utilized
allogenically.24,25

In the application of stem cells, a crucial consideration is
the accessibility of stem cell sources. Regarding umbilical
cord stem cells, due to the low risk of GVHD, there is no
necessity to procure cells from the patient in an autologous

Fig. 1 The journey of stem cells in the human body: from birth to maturity.
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manner. This aspect simplifies the utilization of this source
significantly compared with others. Furthermore, because of
the potential for off-the-shelf availability, establishing a bank
of MSCs is feasible. All these factors simplify stem cell
utilization. Umbilical cord-derived MSCs, in particular, are
easier to collect and pose no health risks to mothers or
newborns. They offer advantages over bone marrow stem
cells in terms of accessibility and ease of collection. Addi-
tionally, umbilical cord stem cells can be cryogenically stored
for future therapeutic use, with Wharton’s jelly extraction
holding promise for efficient banking.26

Research suggests that these MSCs show immune toler-
ance and can traverse MHC barriers while avoiding trigger-
ing immune reactions. They also suppress lymphocyte
proliferation and cytotoxic T cell formation, possibly
through prostaglandin E2 and TGF-β1 mechanisms. Similar
immunosuppressive effects are seen in umbilical cord-
derived MSC-like cells, hinting at therapeutic potential.26–29

Homing of Umbilical MSC
Significant evidence suggests that MSCs possess a unique
ability to migrate to pathological areas, guided by chemo-
kines and other signals originating from those sites.26

However, when umbilical cord MSCs are administered
intravenously, they have been observed to relocate to the
lung, liver, and spleen after several days.30 Consequently,
direct injection via interventional radiology (IR) delivery
facilitates localized therapy and enhances concentration
within the targeted region.

Aside from their immunosuppressive characteristics,
MSCs exhibit an affinity for injured or actively growing
tissues. For instance, when injected into the brain, MSCs
transfer along established routes, such as the corpus stria-
tum. Following injection into the lateral ventricle of neonatal
mice, they disperse across the forebrain and cerebellum,
integrating into the central nervous system’s framework
and displaying markers typical of mature astrocytes and
neurons.31,32 In injured spinal cords, MSCs were observed

to form guiding structures, facilitating the regeneration of
fibers.33

MSCs have been implicated in aiding regeneration in
conditions like stroke34,35 or myocardial ischemia.36,37 The
cells disperse across the forebrain and cerebellum, integrat-
ing into the structure of the central nervous system. Upon
injection into the lateral ventricles of neonatal mice, they
demonstrate the expression of mature astrocyte and neuron
markers.38,39

iPS Stem Cells
The creation of iPS cells from somatic cells through defined
transcription factors offers significant promise for regenera-
tive medicine. These cells present advantages like the ability
to derive patient-specific cells and avoid ethical concerns
associated with embryonic tissue. However, challenges such
as reprogramming factor delivery, genomic instability, and
epigenetic memory remain to be addressed before wide-
spread clinical translation. Despite these hurdles, iPS cells
hold great potential for various applications, like cell re-
placement therapies, pharmacological screening, and dis-
ease modeling. The minimally invasive nature of iPS cell
generation and their potential for personalized interventions
further underscore their importance.While more research is
needed, promising preclinical studies suggest a rapid move
toward clinical application within just 8 years since their
discovery.40–43

Fetal Stem Cell
Fetal blood, particularly in the first 3 months, is abundant in
hematopoietic stem cells that differentiate more rapidly.
Another notable aspect of fetal blood is that, alongside
hematopoietic stem cells, it also generates nonhemato-
poietic stem cells. Both types of these cells possess the
capability to transform into various types of bodily tissues.
Using fetal cells not only offers a higher potency relative to
other categories of adult stem cells but also presents fewer
ethical challenges compared with embryos. These cells also

Fig. 2 Adult stem cells in the human body.
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exhibit high capability in laboratory studies and gene thera-
py research.44

Despite all the advantages of fetal stem cells, their use
poses several challenges: obtaining consent from the parents
of aborted fetuses, managing host immune responses, select-
ing the best method of cell delivery into the body, purifying
the desired tissue from the stem cell source, and culturing it
in the laboratory, among other factors. Current research
focuses on elucidating the mechanisms underlying fetal
stem cell engraftment, homing, and differentiation.44

Successful cases, like the management of X-linked severe
combined immunodeficiency using fetal liver cells in utero,
highlight the therapeutic promise of fetal stem cells in
addressing severe genetic disorders.45

Embryonic Stem Cells
Embryonic stem cells (ESCs) show significant potential
for tissue engineering and regenerative medicine. These
pluripotent cells offer invaluable insights into early differ-
entiation processes and have been studied across various
species, including rodents, primates, and humans. Howev-
er, the clinical application of ESCs faces obstacles, such as
the challenge of generating a pure population of mature
progeny, avoiding teratoma formation, and ensuring effi-
cient purification methods. Additionally, the risk of host
rejection of allogeneic ESC-derived implants necessitates
lifelong immunosuppressive drug use, which comes with
associated side effects. These hurdles underscore the need
for ongoing research to address technical and ethical
challenges before ESC-based therapies can progress to
clinical trials.46–50

A Glance at Adult Stem Cells
Adult stem cells are specific to certain organs within mature
organisms, committed to their predetermined paths of
differentiation.51

Adult stem cells originate from various locations within
the body (►Fig. 2).

Here is a glance at adult stem cells.

Bone Marrow Stem Cells
In preliminary in vivo investigations, it was discovered
that cells derived from bone marrow demonstrated the
ability to transform into diverse tissue categories, such as
muscle fibers, hepatocytes, microglia, astroglia, and neuro-
nal tissue.52–55

Subsequent experiments focused on refined stem cells,
particularly hematopoietic stem cells, which were demon-
strated to produce functional tissue cells. For instance,
transplantation of purified hematopoietic stem cells success-
fully restored liver functions of tyrosinemia type I in an
animal model.56

Moreover, studies highlighted the versatility of hemato-
poietic stem cells in generating cardiomyocytes, vascular
structures, and other cell types involved in arterial
remodeling.57,58

Yet, the physiological significance of these findings
warrants further investigation due to uncertainties sur-

rounding the functional relevance of the transdifferentiated
progeny.59

These results emphasize the potential therapeutic uses
of hematopoietic stem cells in the realm of regenerative
biology. Further elucidating the mechanisms underlying the
differentiation and functionality of these cells could pave the
way for innovative treatments targeting a large number of
diseases.51

Peripheral Blood Stem Cell
Given that bone marrow stem cells can travel to organs via
the peripheral blood, the logical progression was to investi-
gate whether stem cells from peripheral blood undergo a
differentiation process tailored to solid organs, akin to bone
marrow stem cells.60

Several research investigations indicate that human stem
cells present in the bloodstream, triggered by cytokine
administration, contribute to the formation of non-lympho-
hematopoietic tissues. For instance, endothelial progenitor
cells have been observed to support ocular neovasculariza-
tion inmice and neovascularization in ischemicmyocardium
in rats.61

Digestive Tract Stem Cell
The digestive tract varies in epithelial coverings from squa-
mous in the oral cavity and esophagus to glandular struc-
tures in the stomach and intestine, and crypts in the
colorectum. In the esophagus, cell proliferation mainly
occurs in basal layers, showing diverse differentiation pat-
terns, indicating the presence of stem cells.62,63

Stem cells are thought to be situated close to the
gastric pit, with bidirectional cell flux facilitating tissue
turnover.64,65

In the liver, the intrahepatic biliary tree harbors a facul-
tative stem cell compartment activated during regeneration,
contributing to hepatocyte and biliary epithelial cell replen-
ishment. Unique markers, pluripotency-associated factors,
have been identified in putative liver stem cells, suggesting
their localization near portal tracts.66,67

The pancreas comprises exocrine and endocrine tissues,
with β cell renewal being crucial for diabetes treatment.
While pancreatic stem cells remain elusive, evidence sug-
gests potential β cell derivation fromductal cells, particularly
in response to injury.68,69

Adipose Tissue Stem Cells
Adipose-derived stem cells (ASCs) were initially recognized
as MSCs in adipose tissue back in 2001.70 Multiple terms
have been applied to describe these cells. Finally, in 2004,
they were formally termed ASCs.71

ASCs are retrievable from various adipose tissue types,
notably subcutaneous fat, which holds clinical importance.
Extraction sites include the abdomen, thigh, and arm. The
ample presence of adipose tissue in humans suggests a
potential for obtaining ASCs in abundance. Their capability
to change into diverse cell types, release cytokines, and
modulate the immune system highlights their crucial role
in tissue regeneration.71–73
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Female Reproductive Tract
The female reproductive tract features specialized epithelial
linings in the uterus, cervix, and mammary glands, each
harboring distinct stem cell populations. In the uterus,
endometrial glands house stem-like cells similar to those
found in intestinal crypts; in mammary glands, stem cells
are located within terminal ductal lobulo-alveolar units,
capable of differentiating into luminal and myoepithelial
cells.74,75

Studies suggest that the side population (SP) fraction
in mammary glands contains enriched stem cell popula-
tions, facilitating tissue regeneration. Human mammary
gland phenotypes reveal specific markers for myoepithelial,
luminal, and stem cells, providing insights into tissue
organization and regeneration. Isolation of mammary
ductal cells proficient in mammosphere production
further elucidates the stem cells. These findings contribute
to our understanding of tissue dynamics and potential
therapeutic strategies within the female reproductive
tract.75,76

Male Gonadal and Sex Tissue
Spermatogonial segmentation leads to spermatozoa differ-
entiation, with mouse testicular stem cells expressing spe-
cificmarkers and demonstrating high regenerative potential.
Similarly, in humans, two types of A spermatogonia exist:
Apale, which are progenitor cells and Adark, likely stem
cells.77,78

The prostate gland, enveloping the urethra, houses stem
cells primarily located within ducts in mice, expressing
markers like p63. Notably, individual murine prostatic cells
exhibit the capability to form functional acini and demon-
strate the presence of different stem cell markers. Human
prostatic stem cells coexist with basal cells and exhibit
cytokeratin-based differentiation pathways, with CD133-
expressing basal cells demonstrating high proliferative po-
tential and regenerative capacity.79–81

Central Nervous System
In the central nervous system, astrocytes are the primary
kind of stem cells in the brain, supplemented by additional
neural stem cells in specific regions. Transcriptional regula-
tion is involved in maintaining stem cell function, with
Hmga2 identified as a factor in suppressing age-related
changes. Similarly, within the human brain, astrocytes locat-
ed in the subventricular zone exhibit proliferative capabili-
ties and can generate neurospheres with differentiation
potential across three lineages.82–84

Eye
In the eye, the corneal epithelium renewal process involves
cells from across the cornea rather than solely from the
limbus, contrary to previous beliefs. However, the limbus
may still harbor enriched stem cell populations, as suggested
by the discovery of a SP exhibiting high clonogenicity. In
mice, the ciliarymargin of the retina contains cells with stem
cell features, expressing various transcription factors, and
capable of multipotential differentiation.85,86

Stratified Squamous Epithelia
The skin’s stratified keratinizing squamous epithelium, the
interfollicular epidermis, and the outer root sheath of hair
follicles are composed of a basal layer where cell division
primarily occurs. Recognition of epidermal stem cells has
depended on label-retaining cells or β1 integrin expression
enrichment.87

In mice, bulge stem cells expressing K15 regenerate the
entire hair follicle and sebaceous gland. CD200 expression
selection boosts colony-forming efficiency in human hair
bulge cells.88–90

Heart and Skeletal Muscle
Both heart and skeletal muscle possess regenerative poten-
tial through various stem/progenitor cell populations.91–94

Cardiomyocytes and cardiac stem cells demonstrate the
ability to differentiate into diverse cardiac cell types, con-
tributing to cardiac repair postmyocardial infarction. Simi-
larly, satellite cells have historically been considered the
primary contributors to muscle regeneration, but recent
evidence suggests a more complex interplay involving
multiple cell sources or previously unrecognized lineages.
Muscle SP cells and nonmyogenic cells like mesoangioblasts
and bone marrow-derived cells also participate in
muscle repair, highlighting the need to understand their
roles and relationships with classical satellite cell markers
for comprehensive comprehension of muscle regeneration
mechanisms.95

Conclusion

Given the remarkable effectiveness of regenerative medicine
in treating diseases, the convergence of IR and regenerative
medicine could revolutionize medical science.

An interventionalist must understand various sources of
stem cells and their function. Stem cells are attracted to
highly inflammatory sites, where they mitigate inflamma-
tion and differentiate into target tissue cells. While alloge-
neic sources of stem cells are more readily available, they
come with the risk of recipient immune responses.

Among all sources, umbilical cord blood stands out due to
its off-the-shelf availability and abundance. Additionally,
bone marrow serves as a valuable source due to the high
potency of its cells. However, embryonic and fetal stem cells,
despite their high potency, pose ethical challenges and are
less accessible. Themost crucial aspect of utilizing adult stem
cells is that they often differentiate into cells of their heritage
rather than multiple lineages as they are mature and gradu-
ally lose their differentiation ability from the embryonic to
the mature cell stage. ASCs, initially recognized as MSCs in
2001, have emerged as pivotal players in regenerative sci-
ence due to their abundant availability in various adipose
tissue types, versatile differentiation potential, and immu-
nomodulatory properties, promising significant advance-
ments in therapeutic applications for tissue regeneration.
iPS cells offer personalized regenerative solutions, overcom-
ing ethical hurdles, yet face challenges like reprogramming
and genomic instability, potentially hindering their clinical
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translation despite their diverse applications and rapid
progress in regenerative medicine.

Consideration of the diameter of stem cells in arterial
delivery poses a challenging aspect for vascular interven-
tionalists, particularly in cases like brain capillaries where
artery diameter is minimal.

The combination of IR and regenerativemedicine is a very
new subject, and research in this area is rapidly expanding. It
could potentially lead to revolutionary advancements in
medical science.
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