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Introduction Texture and radiomic analysis characterize the lesion’s phenotype and
evaluate its microenvironment in quantitative terms. The aim of this study was to
investigate the role of textural features of 18F-fluorodeoxyglucose (18F-FDG) positron
emission tomography-computed tomography (PET/CT) images in differentiating patients
with cardiac sarcoidosis (CS) from patients with physiologic myocardial uptake.
Methods This is a retrospective, single-center study of 67 patients, 17 diagnosed CS
patients, and 50 non-CS patients. These patients underwent FDG PET/CT for the
diagnosis of CS. The non-CS group underwent 18F-FDG PET/CT for other oncological
indications. The PET/CT images were then processed in a commercially available
textural analysis software. Region of interest was drawn over primary tumor with a 40%
threshold and was processed further to derive 92 textural and radiomic parameters.
These parameters were then compared between the CS group and the non-CS group.
Receiver operating characteristics (ROC) curves were used to identify cutoff values for
textural features with a p-value < 0.05 for statistical significance. These parameters
were then passed through a principle component analysis algorithm. Five different
machine learning classifiers were then tested on the derived parameters.

Results A retrospective study of 67 patients, 17 diagnosed CS patients, and 50 non-CS
patients, was done. Twelve textural analysis parameters were significant in differentiating
between the CS group and the non-CS group. Cutoff values were calculated for these
parameters according to the ROC curves. The parameters were Discretized_HISTO_En-
tropy, GLCM_Homogeneity, GLCM_Energy, GLRLM_LRE, GLRLM_LGRE, GLRLM_SRLGE,
GLRLM_LRLGE, NGLDM_Coarseness, GLZLM_LZE, GLZLM_LGZE, GLZLM_SZLGE, and
GLZLM_LZLGE. The gradient boosting classifier gave best results on these parameters
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with 85.71% accuracy and an F1 score of 0.86 (max 1.0) on both classes, indicating the
classifier is performing well on both classes.

Conclusion Textural analysis parameters could successfully differentiate between the
CS and non-CS groups noninvasively. Larger multicenter studies are needed for better
clinical prognostication of these parameters.

Introduction

18F-fluorodeoxyglucose (18F-FDG) positron emission tomog-
raphy (PET) plays an important role in the diagnosis and
assessment of cardiac sarcoidosis (CS).1 Sarcoidosis is a sys-
temic disorder, which affects multiple organs. Cardiac involve-
ment is an important prognostic factor in sarcoidosis patients.
Therefore, a definitive and accurate diagnosis is necessary.
There are various methods for diagnosing and assessing the
activity of CS, including objective and quantitative assess-
ments using 18F-FDG PET/computed tomography (CT).2

Various methods for evaluating FDG uptake in the diag-
nosis and management of CS have been reported. The most
popular approaches include visual assessment,? semiquan-
titative analysis using standardized uptake value (SUV),> and
volume-based analyses using cardiac metabolic volume
(CMV) and cardiac metabolic activity (CMA).*

In FDG PET/CT, a glucose analog is used as a tracer. It
represents the lesion glycolytic activity. The most widely
used parameter is SUVmax, the maximum SUV.

Many recent studies have concluded that the heterogene-
ity of the FDG uptake provides diagnostic and prognostic
benefits in CS patients®~'C.

The FDG uptake is variable at places due to necrosis,
hypoxia, cell proliferation, and microvessel density.!" More
heterogeneous lesions are more aggressive and correlate with
poorer outcomes.

Textural analysis characterizes tumor heterogeneity in
the form of PET image-derived quantitative indices. It
extracts meaningful quantitative parameters from two- or
three-dimensional (3D) images. They allow for the quantifi-
cation of tumor phenotypic characteristics. The textural
analysis is based on the spatial arrangement and distribution
of voxels in a volume of interest.'?

This study aims to evaluate the role of textural analysis in
differentiating the CS group from the non-CS patients.
Whether the myocardial FDG textural analysis could add
diagnostic value beyond the standard FDG diagnostic indices
in the diagnosis of CS was also analyzed.

Materials and Methods

Patients

In this retrospective single-center investigation, we prospec-

tively analyzed patients diagnosed with CS. Seventeen patients

without oral steroid treatment before the FDG PET/CT scan

were included between October 2019 and December 2023.
For the control group (non-CS group), 50 consecutive

patients who underwent an FDG PET/CT scan for evaluating
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malignant tumors in 2023 were retrospectively analyzed. All
non-CS patients suffered from a malignant disease or had
been treated for a malignant disease. The fasting duration
was obtained from the patient interview record before FDG
administration. Patients who were < 20 years old, patients
whose imaging protocol was different, and patients without
any uptake in the myocardium were excluded from the
control group. In all patients, available clinical parameters,
including age, sex, and histology, were recorded.

Imaging Technique

All CS patients fasted overnight (for at least 18 hours) pre-
ceded by a low-carbohydrate diet, with less than 5g of
carbohydrate per meal. Note that 50IU/kg heparin was
administered to the CS patients 20 minutes before the FDG
injection. Non-CS patients were instructed not to consume
any food other than plain water for at least 6 hours before the
time of injection of FDG, with no special dietary preparation
such as a low-carbohydrate meal.

All the PET/CT scans were performed using a GE Discovery
MI-DR PET/CT scanner for staging. The fasting blood glucose
(FBG) was checked before the scan. If the glucose levels were
in the normal fasting range, patients were injected with an
18F-FDG injection. The injections were done according to the
weight of the patients. At 18F-FDG injection, the mean
plasma glucose level was 100 mg/dL. CT from the brain to
mid-thigh was performed before the PET scan using a 16-
slice CT scanner. Whole-body PET was performed, covering
an identical area to that covered by CT. Acquisition time was
1 to 2 minutes per bed position, with 7 to 8 bed positions. The
obtained images were then exported to the textural analysis
software.

Image Analysis

The images were exported to commercially available textural
analysis software. The FDG uptake pattern in the myocardi-
um was visually interpreted in consensus by two board-
certified nuclear medicine physicians. They were blinded to
clinical, pathological, and other imaging information. The
myocardium was delineated manually, and regions of inter-
est (ROIs) were drawn over the myocardium. The ROI was
then delineated with 40% thresholding. Then, the ROI was
processed to obtain the textural indices. All the parameters
were extracted from the delineated lesions.

Standardized Uptake Value Analysis

Activity in a lesion is reported in terms of the SUVmax.
SUVmax is the value of the most intense pixel in the ROL
This allows the exclusion of low counts from areas of
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necrosis adjacent to normal structures. SUVmean is an
average of all counts in the ROI, which may be more
representative because a spurious single hot area will not
cause incorrect data to be recorded. SUVpeak is the average
of the counts from a circular volume surrounding the
hottest pixel. The SUVpeak may more accurately represent
maximal tumor metabolism with a higher degree of statis-
tical significance than the SUVmax. Metabolic tumor vol-
ume (MTV) refers to the metabolically active volume of the
tumor. Total lesion glycolysis is the product of MTV and
SUVmean. All these values are provided by the software
automatically.

Textural Analysis

Once the images are processed, the software provides
different types of textual indices and matrices. There
are three different types of textural features—first-
order, second-order, and higher-order textural features.
First-order textural features are statistics based on the
gray-level distribution of the image but do not consider
relative positions of gray levels. They quantify intensity
variations between each voxel and its immediate neigh-
bors. Second- and higher-order textural features consider
relative positions of gray levels and therefore allow quan-
tification of heterogeneity.

First-Order Parameters

First-order parameters quantify intensity variations be-

tween each voxel and its immediate neighbors. These are

intensity-based and histogram-based parameters. They

include parameters like entropy, skewness, and energy.
Entropy reflects irregularity in the gray level. A completely
random distribution would have very high entropy.
Energy reflects the uniformity of the distribution.
Skewness reflects the asymmetry of the gray-level
distribution.
Kurtosis reflects the shape of the gray-level distribution
relative to normal distribution.

Second-Order Parameters

These are regional heterogeneity parameters. They are cal-
culated through analysis at the level of groups of boxes and
areas of various sizes and intensities. They include:

1. Gray level zone length matrix (GLZLM): It provides
information on the size of homogeneous zones for
each gray level in three dimensions. From this matrix,
11 textural indices can be computed. They depend on the
size of the zone if it is a long zone or short zone and the
level of intensity; if it is a low gray level or a high gray
level.

2. Gray level run length matrix (GLRLM): It gives the size of
homogeneous runs for each gray level. The matrix is
computed for the 13 different directions in 3D and for
each of the 11 textural indices derived from the matrix.
They depend on the size of the run if it is a long run or
short run, and the level of intensity if it is a low gray level
or a high gray level.

Higher-Order Parameters

These parameters tell us about spatial interrelationships and
frequency distributions of the gray levels. They include
matrices like neighborhood gray level difference matrix
and gray level cooccurrence matrix (GLCM).

1. Neighborhood gray level difference matrix (NGLDM): It
corresponds to the difference of gray level between 1
voxel and its 26 neighbors in three dimensions. Three
textural indices are computed from this matrix.

i. NGLDM_Coarsness: Is the level of spatial rate of change
in intensity.

ii. NGLDM_Contrast: Is the intensity difference between
neighboring regions.

iii. NGLDM_Busyness: This is the spatial frequency of

changes in intensity.

2. Gray level cooccurrence matrix (GLCM): It takes into account
the arrangements of pairs of voxels to calculate textural
indices. Six textural indices are computed from this matrix.
i. GLCM_Homogeneity: Is the homogeneity of gray-level

voxel pairs.

ii. GLCM_Energy: Is the uniformity of gray-level voxel
pairs.

iii. GLCM_Contrast: Is the local variations in the GLCM.

iv. GLCM_correlation: Is the linear dependency of gray
levels in GLCM.

v. GLCM_Entropy: Is the randomness of gray-level voxel

pairs.

GLCM_Dissimiliarity: This is the variation of gray-level

voxel pairs.

—_

VI.

Statistical Analysis

The analysis included 67 patients, 17 diagnosed CS patients
and 50 non-CS patients. These patients underwent 18F-FDG
PET/CT on a GE Discovery MI-DR PET/CT scanner. The images
were processed in commercially available textural analysis
software. ROI was drawn over the myocardium with a 40%
threshold and was processed further to derive 92 textural
and radiomic parameters. These parameters were then com-
pared between the CS group and the non-CS group. Receiver
operating characteristic (ROC) curves were used to identify
the optimal cutoff values for the textural features with a p-
value < 0.05 for statistical significance using statistical anal-
ysis software. Specificity and sensitivity (including 95%
confidence intervals) for each of the studied parameters
were derived using ROC curves measuring associated areas
under the ROC curves (AUC). Textural results were compared
with those of SUVmax and SUVmean for their ability to
distinguish between the CS group and the non-CS group.
These parameters were then passed through a principle
component analysis algorithm. Five different machine learn-
ing classifiers were then tested on the derived parameters.

Results

This study involved 67 patients, 17 diagnosed CS patients and
50 non-CS patients. For the non-CS group, patients without

World Journal of Nuclear Medicine © 2024. The Author(s).
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Table 1 Patient characteristics

Patient characteristics Number
Sex Male 40
Female 27
Diabetes Present 8
Absent 59
Cardiac sarcoidosis 17
Non-cardiac sarcoidosis 50

any cardiac uptake were excluded from the study. A total of
50 patients (62.5 + 13.0 years old, 35 males) were included in
the non-CS group. Non-CS patients included 9 patients
suffering from malignant lymphoma, 2 from squamous cell
carcinoma of unknown primary lesion, 9 from lung cancer, 6
from colon cancer, 5 from cervical cancer, 10 from breast
cancer, and 9 from esophageal cancer. Eight patients had
diabetes mellitus. Gender and age showed no significant
differences between the CS and non-CS groups. However,
the fasting period was longer and the FBG was lower for the
CS group compared to the non-CS group.

All the patients’ characteristics are described in ~Table 1.

By textural analysis, the AUC values were calculated for all
the different parameters. Neither SUVmax nor SUVmean sig-
nificantly differed between the CS group and the non-CS group.

In the case of first-order parameters (~Fig. 1), discreti-
zed_Histo_Entropy was significant in differentiating be-
tween the CS and non-CS groups. The AUC value for this
parameter was 0.79 and the cutoff was calculated to be
0.1092. The rest of the parameters were not significant to
differentiate between the CS and non-CS groups. They had an
AUC value below 0.7. Among the rest of the first-order
parameters, SUV skewness, SUV kurtosis, and SUV excess
kurtosis have a maximum AUC value of 0.63.

Among the second-order parameters, four parameters from
the GLRLM matrix (=Fig. 2) and four parameters from the
GLZLM matrix (=Fig. 3) were significant in differentiating the
CS group from the non-CS group. They were GLRLM_LRE,
GLRLM_LGRE, GLRLM_SRLGE, and GLRLM_LRLGE and

ROC Curve

Source of the Curve

~— CONVENTIONAL_SUVbwmi

— CONVENTIONAL_SUVbwme
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__ CONVENTIONAL_SUVbw
Kurtosis
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ExcessKurtosis
TG
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Reference Line
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Fig.1 Receiver operating characteristics (ROC) analysis for first order
parameters.
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Fig. 2 Receiver operating characteristics (ROC) analysis of gray level
run length matrix (GLRLM) parameters.
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Fig. 3 Receiver operating characteristics (ROC) analysis for gray level
zone length matrix (GLZLM) parameters.

GLZLM_LZE, GLZLM_LGZE, GLZLM_SZLGE, and GLZLM_LZLGE.
The cutoffs were calculated for these parameters. The cutoffs
are given in =Table 2, and the AUC values are described
in =Table 3. These parameters tell about the distribution of
the size of homogeneous zones for each gray level in three
dimensions.

Table 2 Cutoffvalues for GLRLM and GLZLM matrix parameters

Sr. no. Parameters Cutoffs
1. GLRLM_LRE 1.333

2. GLRLM_LGRE 0.0041
3. GLRLM_SRLGE 0.0037
4. GLRLM_LRLGE 0.0060
5. GLZLM_LZE 40.97

6. GLZLM_LGZE 0.0039
7. GLZLM_SZLGE 0.0020
8. GLZLM_LZLGE 0.4192

Abbreviations: GLRLM, gray level run length matrix; GLZLM, gray level

zone length matrix.



Role of Textural Analysis Parameters Derived from FDG PET CT in Diagnosing Cardiac Sarcoidosis/Kote et al.

Table 3 AUC values for GLRLM and GLZLM matrix parameters

Sr. no. Parameters AUC values
1. GLRLM_LRE 0.71

2. GLRLM_LGRE 0.804

3. GLRLM_SRLGE 0.808

4. GLRLM_LRLGE 0.804

5. GLZLM_LZE 0.794

6. GLZLM_LGZE 0.792

7. GLZLM_SZLGE 0.792

8. GLZLM_LZLGE 0.729

Abbreviations: AUC, area under the curve; GLRLM, gray level run length
matrix; GLZLM, gray level zone length matrix.

In the case of higher-order parameters (~Figs. 4 and 5),
GLCM_homogeneity, GLCM_Energy, and NGLDM_Coarse-
ness were significant in differentiating the CS and non-CS
groups. GLCM_homogeneity represents the homogeneity of
the tumor.

Other higher parameters like contrast, busyness, etc., in
the NGLDM and GLCM matrix, were not statistically signifi-
cant predictive factors of response.

The cutoffs are given in =~Table 4, and the AUC values are
described in =Table 5.

These parameters were then passed through a principle
component analysis algorithm. Five different machine learn-
ing classifiers were then tested on the derived parameters.
The gradient boosting classifier gave best results on these
parameters with 85.71% accuracy and an F1 score of 0.86
(max 1.0) on both classes, indicating the classifier is perform-
ing well on both classes.

Discussion

18F-FDG PET is crucial for the diagnosis, care, and treatment
monitoring of CS patients.'> In clinical practice, the SUVmax
is a frequently used semiquantitative technique for making

ROC Curve
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Fig. 4 Receiver operating characteristics (ROC) analysis for gray level
cooccurrence matrix (GLCM) parameters.
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Fig. 5 Receiver operating characteristics (ROC) analysis for
neighborhood gray level difference matrix (NGLDM) parameters.

Table 4 Cutoff values for GLCM and NGLDM matrix parameters

Sr. no. Parameters Cutoff values
1. GLCM_Homogeneity 0.399

2. GLCM_Energy 0.0130

3. NGLDM_Coarseness 0.0020

Abbreviations: GLCM, gray level cooccurrence matrix; NGLDM,
neighborhood gray level difference matrix.

diagnoses, assessing disease activity, and tracking treatment
response.> Nevertheless, because the SUVmax only repre-
sents one voxel, it is unable to fully capture the dispersion of a
target lesion’s metabolism.'* The titration of immunosup-
pressive medication has been guided and cardiac events have
been predicted by volume-based studies of FDG PET param-
eters including CMV and CMA, which have been employed as
assessment instruments.'® It can occasionally be challenging
to discriminate between physiological and inflammatory
lesions because physiological FDG uptake in the left ventric-
ular wall is not limited to diffuse uptake.'®

Currently, increased interest is noted in the use of image-
derived textural analysis parameters for the quantification of
intratumor heterogeneity. The interpretation of images
depends on the observer’s education, expertise, and experi-
ence. The ability to identify diseases based only on qualitative
criteria is strongly operator-dependent.'” The need for more
objective and quantitative evaluation of medial images has

Table 5 AUC values for GLCM and NGLDM matrix parameters

Sr. no. Parameters AUC values
1. GLCM_Homogeneity 0.745
2. GLCM_Energy 0.788
3. NGLDM_Coarseness 0.718

Abbreviations: AUC, area under the curve; GLCM, gray level cooccur-
rence matrix; NGLDM, neighborhood gray level difference matrix.

World Journal of Nuclear Medicine © 2024. The Author(s).
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stimulated efforts to identify reliable imaging biomarkers with
the development of a new research field called radiomics.

Radiomic and textural analysis allow for performing a
whole-body assessment and characterizing lesions in a
noninvasive way. Correlations between textural features
and lesion phenotype have been described.'® In the case of
lung lesions, Miwa et al found that CT-derived morphological
complexity and PET-derived intratumor heterogeneity eval-
uated by fractal analysis differ significantly between malig-
nant and benign lesions.'® According to Zhang et al, PET and
PET/CT texture parameter models can improve the predict-
ability of clear cell renal cell carcinoma Furhman nuclear
grade.?? Bianconi et al found that significant associations
emerged between PET features, CT features, and histological
type in non-small cell lung cancer.?' Kuno et al found that CT
texture analysis may be a noninvasive method of obtaining
additional quantitative information to differentiate nodal
metastases from disease-specific nodal reactivity in human
immunodeficiency virus-positive patients with head and
neck squamous cell carcinoma.??

In CS patients, quantitative assessment of the variability of
FDG uptake has demonstrated benefits for prognosis and
diagnosis.

The myocardium’s CS tissue exhibits heterogeneity on both
macro- and microscopically.’> When exploring intradisease
heterogeneity based on the spatial distribution of uptake, FDG
PET/CT is a useful noninvasive method. According to Sperry
et al, the coefficient of variation was used to describe the
heterogeneity of myocardial FDG uptake, and this gave a
predictive predictor for unfavorable cardiac events.>* Magnet-
ic resonance imaging (MRI) has already been used to apply
texture analysis to heart lesions.?> Larroza et al attempted to
use texture analysis on cine MRI and late gadolinium enhance-
ment MRI of the heart. They concluded that texture analysis
could be utilized to differentiate between myocardial infarc-
tion that is acute and that is chronic.2®

In this study, we assessed the potential role of textural
indices in differentiating between the CS group and non-CS
group patients.

SUV-Related Parameters and First-Order
Parameters

In this study, ROC analysis was performed on SUV-related
parameters and first-order textural parameters. One parameter,
Discretized_Histo_Entropy was significant in differentiating the
CS group from the non-CS group. This parameter provides
information on the asymmetry and uniformity of the image.

Second-Order Parameters

In this work, the second-order and the higher-order param-
eters were significant in differentiating the CS group from
the non-CS group.

The second-order parameters provide information on the
size of homogeneous areas. Four parameters from GLRLM
and four parameters from the GLZLM matrix were signifi-
cant, with AUC values of more than 0.7.

World Journal of Nuclear Medicine © 2024. The Author(s).

GLZLM Matrix

The GLZLM matrix is a second-order parameter. It quantifies
gray-level zones in animage. A gray-level zone is defined as the
number of connected voxels that share the same gray-level
intensity. These are the regional heterogeneity parameters. In
our study, four parameters from the GLZLM_matrix were
significant in differentiating the CS group from the non-CS
group. They were GLZLM_LZE, GLZLM_LGZE, GLZLM_SZLGE,
and GLZLM_LZLGE. AUC value was more than 0.7 for these
parameters.

GLZLM_LZE (Long Zone Emphasis): is a measure of the
distribution of large area size zones, with a greater value
indicative of larger size zones and more coarse textures.

GLZLM_LGZE (Low Gray Zone Emphasis): is a measure of
the distribution of the low gray zones in the image.

GLZLM_SZLGE (Short Zone Low Gray Level Emphasis):
measures the proportion in the image of the joint distribu-
tion of short-size zones with lower gray-level values.

GLZLM_LZLGE(Long Zone Low Gray Level Emphasis):
measures the proportion in the image of the joint distribu-
tion of larger size zones with lower gray-level values.

These parameters quantify the coarseness of the image.
They map the areas with low gray levels and assess their sizes
and arrangements. The response of the lesion to the steroid
therapy depends on these gray levels and their arrange-
ments. The more variation in the texture and gray level of the
tumor, the more aggressive the lesion would be.

GLRLM Matrix

The GLRLM matrix is a second-order parameter. It quanti-
fies gray level runs, which are defined as the length in a
number of pixels of consecutive pixels that have the same
gray level value. These are the regional heterogeneity
parameters. In our study, four parameters from the GLRLM
matrix were significant in differentiating the CS group from
the non-CS group. They were GLRLM_LRE, GLRLM_LGRE,
GLRLM_SRLGE, and GLRLM_LRLGE with an AUC value of
more than 0.7.

GLRLM_LRE (Long Run Emphasis): is a measure of the
distribution of long run lengths, with a greater value indica-
tive of longer run lengths and more coarse structural
textures.

Similar to the GLZLM matrix, the parameters from the
GLRLM matrix quantify the heterogeneity of the tumor.
The more heterogeneity, the more aggressive the lesion
will be.

GLRLM_LGRE (Low Gray Run Emphasis): measures the
distribution of low gray-level values, with a higher value
indicating a greater concentration of low gray-level values in
the image.

GLRLM_SRLGE (Short Run Low Gray Emphasis): measures
the joint distribution of shorter run lengths with lower gray-
level values.

GLRLM_LRLGE (Long Run Low Gray Emphasis): measures
the joint distribution of long-run lengths with lower gray-
level values.
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Higher-Order Parameters

Higher-order parameters provide information about spatial
interrelationships and frequency distributions of the gray
levels.

GLCM Matrix

The GLCM takes into account the arrangements of pairs of
voxels to calculate textural indices.

GLCM_Contrast is a measure of the local intensity varia-
tion. A larger value correlates with a greater disparity in
intensity values among neighboring voxels.

GLCM_Correlation is a value between 0 (uncorrelated) and
1 (perfectly correlated), showing the linear dependency of
gray-level values to their respective voxels in the GLCM.

GLCM_Homogeneity is the homogeneity of gray-level
voxel pairs.

GLCM_Energy is a measure of homogeneous patterns in
the image. A greater energy implies that there are more
instances of intensity value pairs in the image that neighbor
each other at higher frequencies.

Among the higher-order parameters, GLCM homogeneity
and GLCM energy were significant in differentiating the CS
group and the non-CS group.

NGLDM Matrix

The NGLDM matrix quantifies the difference between a gray
value and the average gray value of its neighbors.

NGLDM_Coarseness is a measure of the average difference
between the center voxel and its neighborhood and is an
indication of the spatial rate of change. A higher value
indicates a lower spatial change rate and a locally more
uniform texture.

NGLDM_Contrast measures the spatial intensity change but
also depends on the overall gray-level dynamic range. Contrast
is high when both the dynamic range and the spatial change
rate are high, that is, an image with a large range of gray levels,
with large changes between voxels and their neighborhood.

NGLDM_Busyness is a measure of the change from a pixel
to its neighbor. A high value for busyness indicates a “busy”
image, with rapid changes of intensity between pixels and
their neighborhood.

In this study, NGLDM_Busyness was significant in differ-
entiating the CS patients from the non-CS patients.

Therefore, this result indicated that the CS group and non-
CS group had significantly different homogeneous uptake
patterns.

Manabe et al concluded that LRE was a significant inde-
pendent factor that could distinguish between CS and non-
CS with high interoperator reproducibility and high diagnos-
tic ability.'® Our results confirmed the previous findings
and provided some additional parameters to differentiate
between the CS group and the non-CS group.

In summary, a single feature cannot be directly linked
to a specific biological process. One could assume that a

combination of textual parameters may be closely related to
underlying physiological processes such as vascularization,
perfusion, tumor aggressiveness, or hypoxia.27 Therefore,
textural features could be correlated to morphological
phenotype.

Limitations

The limitation of the present study is that it is retrospective,
considering a relatively small patient cohort. Therefore, the
potential of new image-derived indices characterizing lesion
FDG distribution for differentiating CS from physiologic
myocardial uptake needs to be validated by a prospective
study on a larger patient cohort.

Conclusion

In our study, the value of textual feature analysis was
explored in the FDG PET scans for differentiating between
CS and non-CS patients. Global metabolic features based on
the intensity histogram were computed directly on the
original image. Three orders of features were derived from
the textual analysis—first order, second order, and higher
order.

These features evaluated in this study highlighted lesion
heterogeneity at a local and regional level characterized in
several ways depending on the type of matrix used and the
kind of feature computed on the matrix. In conclusion,
textural parameters derived from 18F-FDG PET/CT can dif-
ferentiate between the CS group and the non-CS group.
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