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Introduction

Resveratrol (Res) is a natural polyphenol extracted from
Polygonum cuspidatum, grape, peanut, mulberry, and other
plants.1–4 Res exhibits extensive biological activities, includ-
ing anticancer, anti-inflammatory, antioxidant, antiviral,
and antineuralgic and heart protection.5–10 Despite the

proven therapeutic efficacy of Res in treating numerous
diseases, several factors impede its optimal effectiveness.
These include chemical instability, poor absorption through
the biofilm, and low oral bioavailability due to first-pass
metabolism and rapid elimination.11–14 Moreover, Res is
classified as a Biopharmaceutics Classification System II
drug, exhibiting low aqueous solubility (<0.05mg/mL) and
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Abstract Resveratrol (Res), an active ingredient derived from a multitude of plants, exhibits
multiple pharmacological activities. However, its poor water solubility and low
bioavailability present significant challenges to its clinical application. Our study aimed
to improve the transdermal absorption of Res using dissolving microneedle (MN)
technology, which could effectively overcome the stratum corneum barrier. Res-loaded
dissolving microneedles (Res-MNs) were fabricated using polyvinyl pyrrolidone K90
(PVP K90) as the matrix material, and a two-step casting procedure was employed. The
process was optimized using the Box–Behnken experimental design approach. The
characteristics of Res-MNs in vitro, including morphology, solubility, safety evaluation,
and skin permeation, were studied. The results showed that the optimum preparation
conditions of Res-MNs were a centrifugation time of 10minutes, a solvent concentra-
tion of 25%, and a prescription ratio (Res: matrix) of 0.375. The skin permeability of the
Res-MNs was enhanced compared with Res suspension and Res gel. The cumulative
release of Res-MNs in vitro was 75%, which was approximately 5 and 3 times that of the
Res suspension group and Res gel group. These results suggest that dissolving MNs
may represent a potential approach for enhancing the transdermal delivery of poorly
absorbed drugs such as Res.

received
November 22, 2023
accepted
September 24, 2024
article published online
November 8, 2024

DOI https://doi.org/
10.1055/s-0044-1791832.
ISSN 2628-5088.

© 2024. The Author(s).
This is an open access article published by Thieme under the terms of the

Creative Commons Attribution License, permitting unrestricted use,

distribution, and reproduction so long as the original work is properly cited.

(https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart,
Germany

THIEME

Original Article e439

Article published online: 2024-11-08

mailto:cmjxzyy@126.com
mailto:tufrankie@163.com
https://doi.org/10.1055/s-0044-1791832
https://doi.org/10.1055/s-0044-1791832


high permeability.15 Consequently, the appropriate route of
administration of Res is a crucial consideration.

Transdermal drug delivery represents an ideal drug admin-
istrationmethod, offering the potential tomaintain a constant
blood concentration, reduce adverse reactions, enhance pa-
tient compliance, and increase bioavailability due to its ab-
sence of hepatic first-pass metabolism.16,17 However, the
skin’s barrier function represents a significant challenge to
drug penetration,18,19 particularly regarding the stratum cor-
neum (SC).20 To overcome this challenge, researchers have
explored a range of strategies to promote transdermal drug
absorption and penetration. These approaches include micro-
needles (MNs),21 iontophoresis,22,23 sonophoresis,24 magne-
tophoretic,25 electroporation,26,27 and photomechanical
waves.28 Nevertheless, conventional methods such as electric
methods-iontophoresis and electroporation, and magneto-
phoretic can create nanosized pores to improve the perme-
ability.29 For insoluble drugs, ionic liquids, sonophoresis, and
other technologies cannot substantially break through the SC
barrier,30,31which greatly affects the permeation efficiency of
drugs. In addition, thesemethods employ sophisticated equip-
ment and complex preparation processes, whichmay result in
discomfort comparable to that experienced during standard
needle injection. MNs are an array of micron-sized needles.
They represent themost viable method for circumventing the
SC barrier to deliver therapeutic drugs to the skin.32,33 Addi-
tionally, the length of the MN is only 0.2 to 1.5mm, which
allows for painless penetration of the skin’s SC while main-
taining minimal invasiveness.34–37

The drug transport method classifiesMN patches into five
types: solid MNs,38 hollow MNs,39 coated MNs,40 dissolving
MNs,41 and hydrogel-formingMNs.42 The first three types of
MNs are manufactured from silicon or metals, and if the
needle breaks during administration, it can cause significant
damage to the skin.43 The safety of emerging materials such
as poly (methyl vinyl ether) co-maleic acid (PMVE/MA) and
methacrylate hyaluronic acid for the preparation of hydrogel
MNs has yet to be confirmed.44 However, the composition of
dissolvingMNs includeswater-solublematrixmaterials such
as polylactic acid, polyvinyl pyrrolidone (PVP), hyaluronic
acid, polyvinyl alcohol, and chitosan. The drug is dispersed or
dissolved in the needle.45–49 After insertion into the skin, the
needle dissolves when it absorbs water from the interstitial
fluid and releases the drug payload. As a result, the drug is
delivered directly to the skin for therapeutic effect without
leaving a sharp needle.50–52 Additionally, when they come
into contact with moisture in the dermis, the tip dissolves
rapidly, thereby facilitating the recoveryof damaged skin and
minimizing the risk of infection.53 Currently, dissolving MNs
have been developed to deliver a range of drugs, including
genes, peptides, vaccines, and proteins.54–57

In this study, a two-step casting procedure was employed
to prepare dissolving MNs for loading Res in the needle tips,
for the first time. PVP K90 was selected as the matrix
material. The mechanical properties, morphology, and skin
permeability of the MNs were characterized. Furthermore,
the puncture performance, skin recovery, and drug release
profiles following MN treatment were evaluated.

Materials and Methods

Materials
Res (purity>99%) was purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China). PVP K90
(Mw¼395.2 Da) was purchased from Boai NewOpen Source
Medical Technology Group Co., Ltd. (Jiaozuo, China). Glycerin
was obtained from Xilong Science Co., Ltd. (Shantou, China).
Sodium carboxymethyl cellulose was purchased from Anhui
Shanhe Medicinal Accessories Co., Ltd. (Anhui, China). Meth-
anolwas purchased fromThermal Fisher Technology Co., Ltd.
(Massachusetts, United States). Anhydrous ethyl alcohol was
purchased from National Pharmaceutical Group Chemical
Reagent Co., Ltd. (Shanghai, China). Chloral hydrate and
Laurocapram were purchased from Shanghai MacLean Bio-
chemical Technology Co., Ltd. (Shanghai, China). Phosphate-
buffered saline (PBS) was purchased from Wuhan Punosai
Biotechnology Co., Ltd. (Wuhan, China). Methylene blue was
purchased from Sigma-Aldrich Shanghai Trading Co., Ltd.
(Shanghai, China). All other reagents were of analytical grade
and purified water was used throughout this study.

Male Sprague Dawley (SD) rats (200�20 g)were provided
by the Experimental Animal Center of Jiangxi University of
Chinese Medicine (Nanchang, China).

Fabrication of Res-Loaded Microneedles
Dissolving MNs were prepared by the two-step casting
method.58 PVP K90 was selected as the best matrix material
for the preparation ofMN tips through our pretesting. Briefly,
the mixture of tip material and drug was poured into theMN
mold (Taizhou, China). After centrifugation at 5,000 r/min for
10minutes, and removing the excess needle tip solution, the
MN mold was kept in a desiccator, dying at room tempera-
ture for 30minutes. Subsequently, the backing material was
poured into the MN mold and centrifuged at 3,000 r/min for
5minutes. The mold is placed in a desiccator and dried at
30°C for 24 hours. Finally, the dissolvingMNswere demolded
and placed in a desiccator before the experiment.

The tip materials were prepared as follows. The tip solu-
tionwas prepared by dissolving PVP K90 in a certain amount
of methanol-aqueous solution for ultrasonic dissolution,
then Res powder was added to acquire a mixture of a
polymer blend.

The backing materials were prepared as follows. PVP K90
(12 g) and glycerol (0.45 g) were placed in ultra-pure water
(30mL), stirred until completely dissolved, removed bubbles
by ultrasound, and set aside before the experiment.

Optimization of Res-Loaded Microneedles
Box–Behnken design, a response surfacemethodology,59was
employed, with centrifugation time (A), solvent concentra-
tion (B), and prescription ratio (Res: matrix) (C) as the
investigated index. Two levels of each independent variable
were employed. The parameter values of the independent
variable (A, B, and C) were based on the results of previous
single-factor experiments (data were not shown), and Res
drug loading (Y) was selected as the dependent variable. The
parameters and values are detailed in ►Table 1. Design-
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Expert software (Stat-Ease, Wilmington, United States) was
used to optimize the correlation between the independent
and dependent variables by generating mathematical equa-
tions, contour, and response surface designs. Accordingly, the
experiment was divided into 17 batches. The criteria for
selecting of optimum formulation were mainly based on the
maximum drug loading.

Characterizations of Microneedles
The geometry of Res-MNs was evaluated by scanning elec-
tron microscope to characterize the size of the MNs, the tip
morphology, and the distribution of the MNs on the array.

Mechanical Strength of Microneedles
The aluminum foil was laid flat, the tip of the Res-loadedMN
wasplaced downward, and theMNwaspressed byapplying a
force of about 10N with the thumb for about 30 seconds.60

TheMNpunctured the aluminum foil. The porosity of theMN
and themorphology of theMNafter puncturewere assessed.

Methylene blue MNs were prepared by a two-step cen-
trifugation method of methylene blue solution (1mg/mL,
2mL) and PVP K90 (300mg). Eight-week-old male SD rats
were anesthetized with 5% chloral hydrate solution, and the
abdominal hair was removed with depilatory cream and
wiped clean. Subsequently, the methylene blue MNs were
pressed on the rat’s abdominal skin and maintained for
10 seconds. After 2minutes, the MNs were removed. The
punctured skin was observed under an optical microscope.

Solubility of Microneedles after Insertion
The dissolution of MN after skin puncture was observed.
Male SD rats were anesthetized with 5% chloral hydrate and
their abdominal hair was removed with a depilatory cream.
TheMNswere pressed on the abdominal skin of the rats with
a force of about 10N/cm2. The MNs were removed from the
skin at predetermined intervals of 1, 5, 10, and 20minutes,
respectively. The dissolved morphology of MNs was ob-
served under an optical microscope.

Safety Evaluation of Res-Microneedles
To prevent the entry of pathogenicmicroorganisms and toxic
substances, and to reduce the risk of infection, microchan-
nels created by MNs need to be quickly closed after adminis-

tration. The MNs were inserted into the depilated skin and
fixed with medical tape. Five minutes later, the MNs were
removed from the skin. The micropores in the skin were
photographed with a digital camera at 0, 1, 2, 3, 6, and
12hours, respectively, until the micropore in the skin be-
came invisible.

Saturation Solubility Test
The solubilization of PVP K90 for Res was evaluated. Briefly,
PVP K90 (25, 50, and 100mg) was dissolved in aqueous
solution (1mL), respectively, ultrasonic dissolution for
15minutes, cooled and added to Res (5mg) to achieve a
mixture containing: (1) Res: PVP K90 (1:5, w/w), (2) Res: PVP
K90 (1:10, w/w), and (3) Res: PVP K90 (1:20, w/w). The
Eppendorf tubes containing solvents and drugs were agitat-
ed on a thermostatically controlled orbital shaker at 37�2°C
at a speed of 200 r/min for 24 hours. The sample was
centrifugated to settle down. The supernatant solution was
filtered through a 0.22-µm filter and analyzed by high-
performance liquid chromatography (HPLC) method. The
blank group only added the same amount of Res (Res aqueous
solution).

Skin Permeability of Res-Loaded Microneedles
The skin permeability of Res-loadedMNwas assessed using a
multifunction transdermal diffuser (TP-6, Tianjin, China) and
a horizontal diffusion cell (TP-6, Tianjin, China). The diffusion
cell contains a donor chamber and an acceptor chamber, with
male SD rat’s skin (2 cm�2 cm) being located between the
chambers. The underside layer was in contact with the
acceptor chamber fluid. The acceptor chamber was filled
with the dissolution medium (PBS, pH¼7.4) and stirred at
600 rpm, maintaining the temperature at 37°C.

Res (30mg) and purified water (10mL) were mixed to
form Res suspension (Res-SUS, 3mg/mL). Res (30mg) and
sodium carboxymethyl cellulose (0.5 g) were dissolved in
purified water (10mL), and then laurazone (0.1mL) was
added to form Res gel solution (Res-GEL, 3mg/mL).

The skinwas treatedwith Res-MNs, Res-SUS, and Res-GEL,
respectively, and then sandwiched between the chambers.
Res-MNs were applied to the surface of the skin and pressed
continuously for 1minutewith a force of about 10N. Res-SUS
(0.1mL) and Res-GEL (0.1mL) were applied on the skin of
rats. At intervals of 1, 2, 3, 4, 6, 8, 12, and 24hours,
respectively, a sample (an aliquot of 0.2mL) was collected
from the sampling port of the acceptor chamber, and an
equal volume of dissolved medium was added to maintain
the sink condition. The content of Res in the samples was
analyzed by the HPLC method.

High-Performance Liquid Chromatography Analysis
The content of Res in the MNs was determined. Briefly, the
tips of the MN patch were removed from the bottom with a
scalpel and dissolved in 2mLmethanol solution. The solution
was swirled for 5minutes, followed by centrifuging at
4,000 rpm for 10minutes. The supernatant was collected
and diluted properly, and Res content in the solution was
determined by an LC-20A HPLC (Shimadzu, Kyoto, Japan)

Table 1 Selected independent and dependent variable levels

Level

Independent variables Lower limit
(�1)

Higher limit
(þ1)

A 5 15

B 20 30

C 0.3 0.5

Dependent variable Constraints

Y Maximize

Abbreviations: A, centrifugation time (min); B, solvent concentration
(%); C, prescription ratio (Res: matrix); Y, drug loading of Res-MNs (µg).
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with a diamond C18 column (4.6mm�250mm, 5 µm, Cal-
ifornia, United States). The flow rate was 1mL/min and the
column temperature was 30°C. The mobile phase consisted
of an equal volume of methanol and water. The detection
wavelength was 308nm and the injection volume was 20 µL.
In the range of 0.1 to 50 µg/mL, there was a good linear
relationship between the peak area (A) and the concentration
of Res (X). The regression equation was A¼136,382X
þ1,271.2 (R2¼0.9998). The extraction recovery rate, accu-
racy, and precision all meet the requirements of biological
sample analysis.

Data Analysis
All data were presented as mean� standard deviation. All
experiments were repeated at least three times. SPSS Statis-
tics 22.0 (SPSS Inc., Chicago, Illinois, United States) with one-
way analysis of variancewas used for statistical analysis. A p-
value of less than 0.05 is considered statistically significant.

Results and Discussion

Formulation Optimization of Microneedles
With the drug loading of MNs as an index, test results of (A)
centrifugation time, (B) solvent concentration, and (C) for-
mulation are shown in ►Table 2. Analysis was conducted
using Design Expert 8.0.6 software, and the regression
equation of the drug loading of MNswas obtained as follows:
Y¼85.84þ0.7085Aþ0.6292Bþ0.1900C�0.0675AB�0.6621
AC �0.1161BC�1.78A2�1.70B2�1.13C2.

The model was established, and then a multiple quadratic
regression response surface model of MN drug loading was
obtained. The test results of the influencing factors (A, B, and
C) were analyzed by multiple linear regression and binomial
fitting analysis to verify the significance of the regression
model and influencing factors. As can be seen from►Table 3,
F¼7.01 and p¼0.0088 in the established regression model.
It shows that the difference in the regression model is very
significant. The p-value of the lack of fitting term is 0.55,
which is above 0.05, and as a result, the difference in the
model is not significant, indicating that the equation is
reliable. Our data indicated that the test design is reliable,
accords with the actual situation, and is realistic enough to
be used in the analysis. Therefore, it is feasible to use this
model to analyze and predict the drug loading of MNs.

From the p-value in ►Table 3, it can be seen that the
centrifugation time (A) in the primary item has a significant
effect on the drug loading of MNs. In the quadratic term, the
effect of secondary terms A2 and B2 have extremely signifi-
cant effects on the drug loading ofMNs, and C2 has significant
effects on the drug loading of MNs. In the interaction terms,
AB, AC, and BC had no significant effect on the drug loading of
MNs. According to the F value in►Table 3, it can be concluded
that the effects of three factors on MN drug loading are
centrifugation time (A)> solvent concentration (B)>pre-
scription ratio (C).

►Fig. 1 was the response surface and contour map of
interaction effects of preparation conditions (A, B, and C)
created by the response surface regression model. The

Table 2 Independent values and response for formulations in Box–Behnken design

Formulations Independent variables Response
Y (µg)A (min) B (%) C

1 15 20 0.375 82.56

2 10 25 0.375 86.93

3 5 20 0.375 81.22

4 5 25 0.500 82.64

5 10 25 0.375 85.01

6 15 30 0.375 83.11

7 10 25 0.375 85.77

8 10 25 0.375 86.12

9 10 30 0.300 83.73

10 10 20 0.300 81.45

11 10 20 0.500 82.67

12 15 25 0.500 83.14

13 10 25 0.375 84.78

14 5 30 0.375 82.04

15 5 25 0.300 81.25

16 15 25 0.300 84.67

17 10 30 0.500 84.17

Abbreviations: A, centrifugation time (min); B, solvent concentration (%); C, prescription ratio (Res: matrix); Y, drug loading of Res-MNs (µg).
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Table 3 Analysis of variance of regression model

Source Sum of squares Freedom Mean square F-value p-Value Significant

Model 43.73 9 4.86 7.0100 0.0088 b

A-Centrifugation time (min) 3.90 1 3.90 5.6300 0.0495 a

B-Solvent concentration (%) 3.07 1 3.07 4.4400 0.0732

C-Prescription ratio (Res: matrix) 0.2888 1 0.2888 0.4168 0.5391

AB 0.0182 1 0.0182 0.0263 0.8757

AC 1.81 1 1.81 2.6100 0.1502

BC 0.0556 1 0.0556 0.0802 0.7852

A2 13.41 1 13.41 19.360 0.0032 b

B2 12.24 1 12.24 17.660 0.0040 b

C2 4.58 1 4.58 6.6100 0.0370 a

Residual 4.85 7 0.6929

Lack of fit 1.84 3 0.6119 0.8120 0.5500

Pure error 3.01 4 0.7536

Total difference 48.58 16

Note: The data are presented as the mean� standard deviation.
ap< 0.05.
bp< 0.01.

Fig. 1 3D response surface plots (A, B, and C) and 2D contour maps (D, E, and F) for the impact of independent variables on drug loading.
(A) Centrifugation time versus solvent concentration. (B) Centrifugation time versus prescription ratio. (C) Prescription ratio versus solvent
concentration. (D) 2D contour maps of centrifugation time versus solvent concentration. (E) 2D contour maps of centrifugation time versus
prescription ratio. (F) 2D contour maps of prescription ratio versus solvent concentration. 2D, two-dimensional; 3D, three-dimensional.
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regression fitting equation of MN drug loading was solved,
and the best preparation conditions were obtained:
A¼10.95, B¼25.90, C¼0.40. Under this condition, the
drug loading of MNs was 85.96 µg. According to the feasibili-
ty of the experiment and practical operation, the conditions
for preparing dissolvingMNs were as follows: centrifugation
time was 10minutes, solvent concentration was 25%, and
prescription ratio was 0.375. Under these conditions, the
drug loading of MNs was 85.72 µg. The relative error of the
predicted value of themodelwas only 0.24 µg, indicating that
the drug loading conditions of MNs were optimized by the
response surface method, and the parameters of the prepa-
ration scheme were accurate and reliable and had a certain
application value.

Although our optimized MN drug loading only varies
between 80 and 87 µg (►Table 2), a small increase in drug
loading is also meaningful. For insoluble drugs, it can in-
crease the exposure of drugs to increase the bioavailability.
For MN drug delivery, the dose given is only equivalent to
that of the traditional dosage form 1/5 to 1/200,61,62 which
can effectively reduce the number of MN patches. According
to existing research, the effective dose of Res in regulating
Human Bone marrow mesenchymal stem cells is 0.1 to 1
µmol/L to regulate self-renewal and multipotency through
the SIRT1-SOX2 axis.63 In this paper, the drug loading of each
MNwas about 86 µg, which is sufficient to exert the curative
effect of Res.

Characterizations
PVP K90 was a nonionic amorphous polymer, which was
widely used in transdermal drug delivery systems because of
its solubility inwater. In addition, PVP K90 did not cause skin
irritation or sensitization.64,65 Therefore, PVP-K90 was used
tomodulate the mechanical strength and brittleness of MNs.
As shown in ►Fig. 2, Res-MNs had a complete needle shape,
which was quadrangular pyramid-shaped, and the MN pla-
quewas square, the needles were arranged in a 10�10 array
in a patch of 8mm�8mm. Compared with pyramids and
circles, this shape had better penetration and higher skin
delivery efficiency. The height of MN was 762.5�1.56 µm,
and the distance betweenMNwas 295�1.25 µm. The length
of theMNmoldwas 800µm and theMN spacing was 300 µm.

Compared with the mold, the size of the prepared MN
shrinks slightly, which may be due to the rapid volatilization
of the solvent during the drying process. When preparing
Res-MNs, we choose 25% methanol solution as a solvent,
which not only can effectively inhibit the diffusion of drugs in
the tip to the backing layer but also reduces the large number
of bubbles caused by solvent volatilization in the preparation
of MN patches.66 As a result, the influence on themechanical
strength and drug loading of MNs can be effectively reduced.

Mechanical Strength
As shown in ►Fig. 3A, B, Res-MN effectively pierced the
aluminum foil and formed 100 holes, and the puncture
efficiency (PE) was 100%. As shown in►Fig. 3C, MN pinholes
are dotted on rat skin, consistent with theMNarray,with a PE
of 100%, indicating that the MNs have sufficient mechanical
strength to puncture the skin and overcome the SC.

Microneedle Dissolution in vivo
The abdominal skin of SD rats was used to evaluate the
dissolution of MNs in vivo. The morphological changes of
MNs after insertion into 1, 5, 10, and 20minutes were
observed by optical microscopy, respectively. As shown
in ►Fig. 4, the tip of the MN dissolved in the skin after
1minute, and the MN gradually dissolved over time. After
20minutes, MNs completely dissolved in the skin. The above
results show that MNs could dissolve in the skin and release
drugs into the skin after contact with active epidermis or
dermis tissue fluid within a few minutes. The rapid dissolu-
tion of MNs helps to be reliable and easy to use in practice,
making patients more compliant.

Application Safety of Res-Microneedles
The recovery of skin after MN treatment was observed by a
digital camera. As shown in ►Fig. 5, the micropores formed
by MNs almost disappeared 3hours after implantation, and
only slight wounds were left in the skin. The puncture marks
gradually disappeared over time, and the spots on the skin
wounds vanished completely within 12 hours later. No obvi-
ous irritant reaction was observed during the observation
period. To sum up, MNs could penetrate the SC and transport
Res directly to the skin lesions, resulting in minor and

Fig. 2 Representative SEM images of dissolving MNs. MNs, microneedles; SEM, scanning electron microscope.
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reversible damage, which greatly increases the convenience
and acceptability of frequent administration.

Saturation Solubility of Res
The solubility of drugs and matrix materials in solvents was
very important to determine whether the drug distribution
in the MNs was uniform and whether the drug loading was
sufficient. PVP K90 was selected as the matrix material of
MNs, not only for its good biocompatibility but also for its
good water solubility.67 As shown in ►Fig. 6, the saturated
solubility of Res in different proportions of PVP K90
solution was 1,783.9�10.45μg/mL (Res: PVP K90, 1:5),
2,008.2�12.5 μg/mL (Res: PVP K90, 1:10), and
380.4�7.44 μg/mL (Res: PVP K90, 1:20), respectively. How-
ever, the average solubility of Res in ultra-pure water was
only 51.9�5.4 μg/mL. The Res solubility of Res: PVPK90 (1:5,
w/w) and Res: PVP K90 (1:10, w/w) was 34 and 38 times
higher than that of Res aqueous solution, respectively, and
the difference was extremely significant (p<0.001). The Res
solubility of Res: PVP K90 (1:20, w/w) was about 7 times
higher than that of Res aqueous solution, but therewas also a
significant (p<0.05). It’s worth exploring whether the Res

Fig. 3 Insertion capacity of the MNs. (A) Conventional frontal aluminum foil shooting image. (B) Conventional back aluminum foil shooting
image. (C) Staining image of skin puncture with methylene blue MNs. MNs, microneedles.

Fig. 4 Morphological changes of MNs dissolution after insertion into
the abdominal skin of SD rats at 1, 5, 10, and 20minutes. MNs,
microneedles; SD, Sprague Dawley.

Fig. 5 The skin recovery within 12 hours after administration of
Res-MNs. Res-MNs, resveratrol-loaded dissolving microneedles.

Fig. 6 The solubilization effect of PVP K90 on Res detected by HPLC.
Data were represented as mean� standard deviation (n¼ 3; �p< 0.05;
���p< 0.001 versus Res aqueous solution). HPLC, high-performance
liquid chromatography; Res, resveratrol.
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solubility of Res: PVP K90 (1:20, w/w) was lower than Res:
PVP K90 (1:5, w/w) and Res: PVP K90 (1:10, w/w). The result
of higher the concentration of PVP K90 in the solution, the
greater its viscosity, thus affecting the infiltration of water in
the solution into Res and reducing its solubilization. For the
other two groups, the low concentration of PVP K90 has
lower viscosity, the main effect on Res is to increase the
dispersion in the solution. Therefore, not only did the specific
surface area of Res improve, but also the hydrophilicity.68

In vitro Skin Penetration of Res-Microneedles
Many previous studies have confirmed that dissolving MNs
could be used as an effective tool to improve the perme-
ability and delivery efficiency of drugs.69 In this experiment,
the abdominal skin of SD rats was used as a drug-permeable
membrane. The permeation profiles of Res from different
approaches are shown in ►Fig. 7. The Res-MN was the
highest among all groups at all time points. Pretreatment
with solid MNs created micropores in the skin, facilitating
the diffusion of the Res from the skin SC into the skin
dermis. The results showed that the Res-MN released about
35% of the drug within 12hours, and then slowly released
the drug over time. Finally, about 75% of the drug was
released within 24hours. The Res-SUS and the Res-GEL had
a lower speed of drug delivery, and about 13 and 25% of the
drugs were delivered within 12hours, respectively. Res-MN
had excellent drug delivery efficiency, with 5 and 3 times
that of the Res-SUS and the Res-GEL within 24hours. The
results confirmed the promoted effect of MN on the pene-
tration of Res into the skin due to the micropores created by
the MN patch.70 Furthermore, Res content delivered to the

receiver compartment was less than that in the needle,
presumably because of the residual drug in the skin.71

Conclusion

In thepresentwork,wedevelopedadissolvable polymericMN
patch loaded with Res to enhance the absorption of Res in
transdermal administration. The Res-MNs were optimized
through the application of the Box–Behnken experimental
design method. The MNs, prepared from the matrix of PVP-
K90, exhibited a smooth body, a sharp tip, and no obvious
pores or gaps on the surface. It demonstratedgoodmechanical
strength, enabling penetration of the skin. Moreover, the
obtained MN dissolved rapidly upon absorption of interstitial
fluid following insertion. In addition, the pinhole created by
the MN can be expected to heal within 12hours, indicating
excellent skin recovery. Most notably, the PVP K90 demon-
strated a pronounced solubilization effect on Res, markedly
enhancing the drug-loading capacity of Res within MNs. In
vitro, transdermal release studies demonstrated that Res-MNs
exhibited excellent drug delivery efficiency, with a drug deliv-
ery amount of about 5 and 3 times that of the Res-SUS and the
Res-GEL, respectively, within 24hours. To sum up, Res-MNs
manufactured fromPVP-K90notonlyenhance the solubilityof
Res but also exhibit notable advantages in transdermal deliv-
ery. Nevertheless, further animal studies are required to assess
the pharmacokinetic and pharmacodynamic profiles of the
Res-MNs for their potential clinical application.
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