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Abstract Introduction Skeletal muscle is increasingly plastic with an ability to gain or lose
tissue. Depletion of muscle mass and quality occurs due to various factors such as
aging, disease, and disuse. Sarcopenia can be loosely defined as a significant loss of
muscle mass and function. Sarcopenia is now recognized as an independent risk factor
for various patient-related negative outcomes after various surgeries. Various comput-
ed tomography (CT) based imaging indices for assessment of sarcopenia exist in
practice. The psoas muscle Hounsfield unit average calculation (HUAC) has been
proven to be an effective one as it is independent of patient anthropometric data, and it
can be calculated in the images provided.
Aim The aim of this study is to develop automated tools for estimation of the HUAC
using deep learning algorithms.
Materials and Methods A total of 41 abdominal CTs were used. Ground truth was
established and validated by two radiologists with more than 5 and 10 years of
experience each. Models were trained to identify the psoas muscle among the slices
and calculate the HUAC.
Results At inference, an average intersection over union (IoU) value of 90% was
obtained between the deep learning model outputs and the original annotated test
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Introduction

Sarcopenia is a progressive and generalized skeletal muscle
disorder that is associated with increased likelihood of
adverse outcomes.1 It is characterized by the gradual loss
of skeletal muscle mass, strength, and function. It has
emerged as a significant public health concern recently
due to its impact on and relationship with disability, falls,
osteoporosis, prolonged hospital stays, higher postoperative
complications, readmission rates, and perioperative mortal-
ity.2–5 Despite its major impact on patient outcomes, the
loss of tissue often goes unrecognized due to its gradual
decline.6

There exist multiple ways and criteria to define sarcope-
nia, which include imaging and nonimaging techniques.
Questionnaires such as the SARC-F scale (slowness, assis-
tance walking, rising from the chair, climbing stairs, and
falls)7 are used in certain centers, but these have moderate
predictive value.6 Physical performance assessment and
strength assessment using gait speed, chair rise time, bal-
ance test, and dynamometer testing are also used. Anthro-
pometric measurements used to assess sarcopenia include
body mass index (BMI), skin fold thickness, and bioelectrical
impedance testing. However, the real challenge with non-
imaging modalities is the lack of accuracy and poor correla-
tion with patient outcomes. Furthermore, orthopaedic
disorders, neurological conditions, and medications may
also lead to false positives.6

Imaging has therefore emerged as the default assessment
tool for sarcopenia in recent times. Imaging parameters
include dual energy X-ray absorptiometry (DEXA), sonogra-
phy, echo intensity, computed tomography (CT) scans and
magnetic resonance imaging (MRI). In this article, we focus
on CT scans as they are the most employed form of imaging
before major abdominal surgery and lend themselves to
accurate sarcopenia assessment.

Several CT-based indices for sarcopenia exist. The ones
utilizing muscle volumes are not in vogue due to the time
and effort investment needed for volumetric calculations.
Various CT-assessed sarcopenia indices have been reported
in the literature, which include skeletal muscle index/total
abdominal muscle area, simple moving average/body sur-
face area index, psoas muscle index/total psoas muscle area,
muscle attenuation/radiation attenuation, intramuscular
adipose tissue content, Hounsfield unit average calculation
(HUAC), lean psoas muscle area, and total psoas muscle
volume.8

HUAC has emerged as an efficient index for sarcopenia
assessment as it is independent of the patient’s anthropo-
metric data, can be calculated exclusively from CT images,
and does not need contrast administration. A person is
labeled sarcopenic if his or her HUAC lies within the lowest
gender-specific quartile.9

Given the objective nature of the scoring systems and
their reliance on accurate image interpretation, there exists
an opportunity to automate the calculation. The recent
emergence of deep learning using convolutional neural net-
works in areas such as image recognition, classification, and
segmentation can potentially make this exercise attainable
and more objective.8

In pursuit of improved accuracy and efficiency, whichmay
help make sarcopenia scoring available to a broader section
of the patient population, our study endeavors to harness
deep learning technology, resulting in the development of a
robust model that can calculate HUAC directly from CT
images.

Materials and Methods

Our tool for sarcopenia detection is a part of a broader
deep learning model (DLM) that was developed for
abdominal wall assessment in the hernia subspecialty.
Data included CT scans with normal findings and
abdominal wall hernias, which were obtained after inter-
nal review board approvals at two centers: Madras
Medical College, Chennai, India, and Grant Medical
College, Mumbai, India. The study was Health Insurance
Portability and Accountability Act of 1996 (HIPAA)
compliant and adhered to protocols set by National Ethical
Guidelines for Biomedical and Health Research involving
Human Participants, Indian Council for Medical Research
(ICMR), 2017.10 The ethics board of the institution waived
the need for individual patient consents as per the ICMR
guidelines.

In this retrospective study, we employed previously
conducted imaging studies for system testing and analysis,
rendering the need for informed consent waived. All scans
were anonymized at source prior to inclusion within the
study to ensure HIPAA compliance. These scans spanned a
duration of 13 months from November 2021 to Decem-
ber 2022. Forty-one CT scans of the abdomen were ran-
domly selected and retrieved through the Picture
Archiving and Communication System (PACS) at the cen-
ters. We excluded scans with lumbar metallic implants

images for the CTslices. The Dice coefficient was 0.90 between the ground truth labels
and the output from the model.
Conclusion We have demonstrated the accuracy of our deep learning–based algo-
rithm for quantifying the psoas muscle HUAC, which is amarker for sarcopenia. There is
a potential for a fully automated measure to calculate the HUAC for any patient
undergoing CT scan.
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that caused substantial artifacts affecting the visualization
and segmentation of the psoas muscles. No disease
pathology was excluded from the study. This approach
ensures the accuracy of sarcopenia measurements and
minimizes the impact of artifacts on the model’s
performance.

CT Scanning Protocol
The deep learning algorithm for sarcopenia assessment was
trained on plain abdominal CTscans. Supine position breath-
hold CT acquisitions of the abdomen and pelvis were per-
formedwithout intravenous (IV) contrast inmultidetector 8-
to 64-slice CT scanners. To ensure proper segmentation of a
diverse range of CT images, the algorithm was designed to
accommodate a wide range of tube currents and slice thick-
nesses, producing significant variations.

A brief overviewof the data acquisition and preprocessing
is provided in ►Fig. 1.

Generation of Ground Truth Labels
Ground truth is crucial in training deep learning algorithms,
and it serves to feed accurate and reliable reference data,
allowing the algorithm to learn from correct examples and
improve its performance. In other words, it serves as a
benchmark against which the algorithm’s predictions are
compared, promoting its adjustments toward higher accura-
cy. The forty-one CTs were processed to lower image resolu-
tion, that is, 128�128 pixels andmin-max normalized them.
Binary masked images were generated with left and right
psoas muscles assigned label 1 and background as 0. Axial
images of every slice including L2–L4 vertebrae were
extracted from the CTs and used for analysis. Ground truth
segmentation maps were created using open-source ITK-
SNAP ver3.8 software.11 Ground truth labels were defined
using the segmentation maps of the psoas muscles created
by manual annotation on CTs by a radiologist (with >5 years
of clinical experience). These were further verified by

Fig. 1 Sarcopenia calculation data workflow. CT, computed tomography.
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another seasoned radiologist (>10 years of clinical experi-
ence). Images were contrast adjusted for providing input to
the training models (►Fig. 2).

Development of the System
A total of 13,845 slices from 37 scans were chosen for the
segmentation of the left and right psoasmuscles. These slices
were then input into the TransUNet-based DLM, as illustrat-
ed in►Fig. 2. The U-net, awell-establishedmachine learning
algorithm, was employed for segmenting both normal ana-
tomical structures and pathological lesions on medical
images.12 The loss function encompassed a combination of
binary cross-entropy and dice loss.13 The network under-
went training for up to 200 epochs, where 60% of the images
featured psoas muscles, while the remaining 40% did not.
These images were shuffled and paired with their corre-
sponding binarymasks, and 80% of these pairswere allocated
for training purposes. The training process involved present-
ing images and their manually segmented muscle counter-
parts to the algorithm. The deep learning system was
educated through datasets containing manually segmented

muscles at the L2–L4 levels. Using the manually segmented
muscles as the ground truth, the tool’s intersection of union
was computed for validation purposes.

Testing and HUAC Computation
During the testing phase, the trained model was imple-
mented to performmuscle segmentations at the L2–L4 levels
across the remaining 440 slices from the dataset, encom-
passing the psoas muscle, within the four CT volumes.

Computation of HUAC
To calculate the HUAC score, we resized the input test image
as well as its corresponding predicted binary mask to
512�512 pixels. The individual areas (in cm2) of the two
psoas muscles were computed using the DLM output, that is,
the predicted binary mask. Additionally, the left and right
psoas muscles were isolated from the corresponding CT
scans using the predicted binary mask image, allowing for
the calculation of their mean Hounsfield unit (HU) values
(►Fig. 3). The HUAC score was then computed based on the
formulation shown in ►Fig. 4, incorporating the mean HU
values and the areas of the left and right psoas muscles.

Training and Validation
The loss and intersection over union (IoU) curves that were
obtained during training and validation are shown in ►Figs.

5 and 6, respectively.

Fig. 2 Ground truth labels of the psoas major muscle.

Fig. 3 TransUNet: architectural details. BN, batch normalization; Conv, convolution; RELU, rectified linear unit.

Fig. 4 Formulae used for the Hounsfield unit average calculation.

Journal of Gastrointestinal and Abdominal Radiology ISGAR © 2024. The Author(s).

Sarcopenia Assessment using Deep Learning Rengan et al.



Results

A test sample is shown in ►Fig. 7 and the corresponding
HUAC computations are shown in ►Table 1.

During the inference process, we achieved an average IoU
value of 90% and a Dice coefficient of 0.90 when comparing
the outputs from the DLM to the corresponding ground truth
images. This comparison is depicted in ►Figs. 8 and 9. Each
point on the curves within the figure corresponds to specific
IoU and Dice coefficient values, referring to the ground truth
test CT slices.

A few of the 440 test outcomes are illustrated in ►Fig. 10

showcasing the consistency with their corresponding CTs
and the ground truth images.

Discussion

In this study, we introduce our TransUNet-based model
designed for the automated segmentation of muscles in CT
scans. Our aim is to investigate its precision and accuracy in
measuring the HUAC of the psoas muscles and in diagnosing
sarcopenia. Notably, our approach involves a novelmethod to
quantify a specific muscle, developed while training on a
more compact dataset, as compared with other models.

Our system demonstrates robustness with IoU values
surpassing 90% on validation datasets, with an average IoU
value of 87% when comparing the DLM output to manually
annotated images within the training dataset. The efficiency
of this system encompasses variations in CT scanners and
image acquisition protocols, as our data originate from two
distinct institutions andwere collected retrospectivelywith-
out a firm imaging protocol in place.

Furthermore, our study reveals a Dice coefficient of 0.90
and an average IoU of 0.90. This performance mirrors that of
other researchers who have achieved similarly acceptable
results in the automated segmentation of abdominalmuscles
and fat.14–19 For instance, Lee et al demonstrated a Dice
similarity coefficient (DSC) of 0.93 for abdominal muscles,14

while Weston et al presented a DSC of 0.96 for muscles and
0.94 for visceral fat.17 It is worth noting that the larger
sample size in their training data may contribute to the
enhanced outcomes observed in their respective systems.

Sarcopenia is characterized by degenerative skeletal mus-
cle mass loss and has been used as a predictive marker for

Fig. 5 Loss curves: training and validation. X axis: number of epochs.
Y axis: loss.

Fig. 6 Intersection over union (IoU) curves: training and validation. X
axis: number of epochs. Y axis: IoU.

Fig. 7 Input computed tomography with left and right psoas prediction.
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postoperative complications, driven by its capacity to objec-
tively gauge the patients’ nutritional status, fitness, and
overall frailty. Several studies underscore its role as a pivotal
predictor of morbidity and mortality.6,20–23 Furthermore, its
predictive impact extends beyond mere postoperative ad-
verse events and lends itself to predicting cancer-specific
outcomes after hepatic resections, colectomy, and pancrea-
ticoduodenectomies,24–27 even in patients receiving multi-
modal therapy.28,29 Cross-sectional imaging to measure

psoas area and density appears to be an effective method
to quantify sarcopenia.30

Clinical and subjective evaluations of sarcopenia exhibit
notable inaccuracies.31,32 Several modalities, including
DEXA and body electrical impedance techniques, have
been used to measure it. Even so, CT remains a prominent
diagnostic tool and serves as a gold standard for muscle and
fat evaluation. Among CT-based muscle mass measurement
reports, the L3 level stands as the recommended site,
especially for the psoas muscle.33 This approach exceeds
the effectiveness of DEXA scans, particularly in truncal
areas.21 Among comparable indices like Total Psoas Muscle
Index, we prefer HUAC due to its broader scope. It
encapsulates insights not just related to the psoas expanse
but also radiation attenuation, encapsulating both muscle
density and fatty infiltration. In our research, we focused on
the psoas muscle at the L2–L4 level for HUAC computa-
tion.34,35 The utility of the method extends favorably in
obese patients as well. In contrast to segmenting all
muscles, isolating only the psoas for surface area and HU
assessment has emerged as one of the most predictive
factors for adverse postoperative events.36

Normally, a solitary axial CT image suffices to gauge
muscle cross-sectional area, employing manual or
semiautomated tissue segmentation techniques. However,
these methods demand considerable time and effort, ren-
dering them impractical for high-volume clinical
settings. Several researchers have aimed to employ
automated computer systems for truncal musculature quan-
tification. The integration of deep learning algorithms has
substantially diminished interobserver variability, furnish-
ing an accurate and replicable sarcopenia evaluation.

Sarcopenia assessment serves not merely as a patient
stratification tool but also to guide focused interventions
toward those who require them most. Nutritionists can
tailor diets for surgical patients, while therapists can
determine exercise regimen intensities, both of which
have demonstrated efficacy in reversing the frailty linked
to sarcopenia.37 Our hypothesis posits that identifying
at-risk patients through an automated CT imaging tool,
often already a part of their diagnostic process, can
significantly enhance not only short-term hospital
outcomes but also long-term results following discharge
and return home.38

Several limitations are inherent in our study. Due to its
retrospective nature, patient recruitment lacked a consecutive
pattern and may have introduced a selection bias. While our
inclusion criteria for CT volumes included patients with di-
verse pathologies, without specific limitations, the resulting
small sample size might not be representative of the broader
patient population. Additionally, our validation process relied
on datasets from only two institutions. Therefore, we recom-
mend extensive validation of the DLM on a larger scale to
enhance the robustness and generalizability of our findings.

In conclusion, our study demonstrates the precision of
our deep learning algorithm in quantifying the psoas
muscle’s HUAC, a pivotal marker for sarcopenia. We also

Table 1 HUAC computation using the left and right psoas
prediction as shown in ►Fig. 6

Metrics Scores

Right psoas area 19.9000

Left psoas area 19.1800

HUACRight 25.7935

HUACLeft 21.4721

HUAC 23.6328

Abbreviation: HUAC, Hounsfield unit average calculation.

Fig. 8 Intersection over union (IoU) curves at inference. X axis: test
slices. Y axis: IoU.

Fig. 9 Dice coefficient at inference. X axis: test slices. Y axis: Dice
coefficient.
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validate the feasibility of training a neural network effec-
tively with a compact dataset for muscle segmentation. The
evolving capabilities of deep learning in pattern recogni-
tion, when coupled with methods for accurate L2–L4 slice
localization, pave the way for a comprehensive automated
HUAC in CT scans. Our findings underscore technology’s
potential to refine sarcopenia assessment. By integrating
deep learning with complementary methods, a streamlined,
standardized approach for evaluating muscle health
emerges, equipping medical professionals with enhanced
diagnostic tools.

Funding
None.

Conflict of Interest
None declared.

References
1 Cruz-JentoftAJ, BahatG,Bauer J, etal;WritingGroupfor theEuropean

WorkingGroup on Sarcopenia inOlder People 2 (EWGSOP2), and the
Extended Group for EWGSOP2. Sarcopenia: revised European con-
sensus on definition and diagnosis. Age Ageing 2019;48(01):16–31

Fig. 10 Input computed tomography scans, ground truth images, and the model predictions at inference.

Journal of Gastrointestinal and Abdominal Radiology ISGAR © 2024. The Author(s).

Sarcopenia Assessment using Deep Learning Rengan et al.



2 Landi F, Liperoti R, Russo A, et al. Sarcopenia as a risk factor for
falls in elderly individuals: results from the ilSIRENTE study. Clin
Nutr 2012;31(05):652–658

3 Richards SJG, Senadeera SC, Frizelle FA. Sarcopenia, as assessed by
psoas cross-sectional area, is predictive of adverse postoperative
outcomes in patients undergoing colorectal cancer surgery. Dis
Colon Rectum 2020;63(06):807–815

4 `Gariballa S, Alessa A. Sarcopenia: prevalence andprognostic signif-
icance in hospitalized patients. Clin Nutr 2013;32(05):772–776

5 Xu J, Wan CS, Ktoris K, Reijnierse EM, Maier AB. Sarcopenia is
associated with mortality in adults: a systematic review and
meta-analysis. Gerontology 2022;68(04):361–376

6 Boutin RD, Yao L, Canter RJ, Lenchik L. Sarcopenia: current
concepts and imaging implications. AJR Am J Roentgenol 2015;
205(03):W255-66

7 Cao L, Chen S, Zou C, et al. A pilot study of the SARC-F scale on
screening sarcopenia and physical disability in the Chinese older
people. J Nutr Health Aging 2014;18(03):277–283

8 Cao Q, Xiong Y, Zhong Z, Ye Q. Computed tomography-assessed
sarcopenia indexes predict major complications following sur-
gery for hepatopancreatobiliary malignancy: a meta-analysis.
Ann Nutr Metab 2019;74(01):24–34

9 Wagner D, Marsoner K, Tomberger A, et al. Low skeletal muscle
mass outperforms the Charlson Comorbidity Index in risk predic-
tion in patients undergoing pancreatic resections. Eur J Surg
Oncol 2018;44(05):658–663

10 National Ethical Guidelines for Biomedical and Health Research
Involving Human Participants. 2017. Accessed June 26, 2018 at:
https://www.icmr.nic.in/guidelines/ICMR_Ethical_Guidelines_2017.
pdf

11 Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active
contour segmentation of anatomical structures: significantly
improved efficiency and reliability. Neuroimage 2006;31(03):
1116–1128

12 Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks
for biomedical image segmentation. In: Navab N, Hornegger J,
Wells WM, Frangi AF, eds. Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015. Cham: Springer
International Publishing; 2015:234–241

13 Milletari F, Navab N, Ahmadi SA. V-Net: Fully Convolutional
Neural Networks for Volumetric Medical Image Segmentation.
Paper presented at: 2016 Fourth International Conference on 3D
Vision (3DV); October 25–28, 2016; Stanford, CA

14 Lee H, Troschel FM, Tajmir S, et al. Pixel-level deep segmentation:
artificial intelligence quantifiesmuscle on computed tomography for
body morphometric analysis. J Digit Imaging 2017;30(04):487–498

15 Burns JE, Yao J, Chalhoub D, Chen JJ, Summers RM. A machine
learning algorithm to estimate sarcopenia on abdominal CT. Acad
Radiol 2020;27(03):311–320

16 Decazes P, Tonnelet D, Vera P, Gardin I. Anthropometer3D: auto-
matic multi-slice segmentation software for the measurement of
anthropometric parameters from CT of PET/CT. J Digit Imaging
2019;32(02):241–250

17 Weston AD, Korfiatis P, Kline TL, et al. Automated abdominal
segmentation of CT scans for body composition analysis using
deep learning. Radiology 2019;290(03):669–679

18 Bridge CP, Rosenthal M, Wright B, et al. Fully-automated analysis
of body composition from CT in cancer patients using convolu-
tional neural networks. In: Stoyanov D, Taylor Z, Sarikaya D, et al,
eds. OR 2.0 Context-Aware Operating Theaters, Computer
Assisted Robotic Endoscopy, Clinical Image-Based Procedures,
and Skin Image Analysis. Cham: Springer; 2018:204–213

19 Popuri K, Cobzas D, Esfandiari N, Baracos V, Jägersand M. Body
composition assessment in axial CT images using FEM-based
automatic segmentation of skeletal muscle. IEEE Trans Med
Imaging 2016;35(02):512–520

20 Onishi S, Tajika M, Tanaka T, et al. Prognostic significance of
sarcopenia in patients with unresectable advanced esophageal
cancer. J Clin Med 2019;8(10):1647

21 Lee K, Shin Y, Huh J, et al. Recent issues on bodycomposition imaging
for sarcopenia evaluation. Korean J Radiol 2019;20(02):205–217

22 Pinto Dos Santos D, Kloeckner R, Koch S, et al. Sarcopenia as
prognostic factor for survival after orthotopic liver transplanta-
tion. Eur J Gastroenterol Hepatol 2020;32(05):626–634

23 McLean RR, Shardell MD, Alley DE, et al. Criteria for clinically
relevant weakness and low lean mass and their longitudinal
association with incident mobility impairment and mortality: the
foundation for the National Institutes of Health (FNIH) sarcopenia
project. J Gerontol A Biol Sci Med Sci 2014;69(05):576–583

24 Peng PD, van Vledder MG, Tsai S, et al. Sarcopenia negatively
impacts short-term outcomes in patients undergoing hepatic
resection for colorectal liver metastasis. HPB (Oxford) 2011;13
(07):439–446

25 Itoh S, Shirabe K, Matsumoto Y, et al. Effect of body composition
on outcomes after hepatic resection for hepatocellular carcinoma.
Ann Surg Oncol 2014;21(09):3063–3068

26 Reisinger KW, van Vugt JLA, Tegels JJW, et al. Functional compro-
mise reflected by sarcopenia, frailty, and nutritional depletion
predicts adverse postoperative outcome after colorectal cancer
surgery. Ann Surg 2015;261(02):345–352

27 Peng P, Hyder O, Firoozmand A, et al. Impact of sarcopenia on
outcomes following resection of pancreatic adenocarcinoma. J
Gastrointest Surg 2012;16(08):1478–1486

28 Antoun S, Birdsell L, Sawyer MB, Venner P, Escudier B, Baracos VE.
Association of skeletal muscle wasting with treatment with sor-
afenib in patients with advanced renal cell carcinoma: results from
a placebo-controlled study. J Clin Oncol 2010;28(06):1054–1060

29 Dodson RM, Firoozmand A, Hyder O, et al. Impact of sarcopenia on
outcomes following intra-arterial therapy of hepatic malignan-
cies. J Gastrointest Surg 2013;17(12):2123–2132

30 Kim TN, Choi KM. Sarcopenia: definition, epidemiology, and
pathophysiology. J Bone Metab 2013;20(01):1–10

31 Price KL, Earthman CP. Update on body composition tools in
clinical settings: computed tomography, ultrasound, and bioim-
pedance applications for assessment and monitoring. Eur J Clin
Nutr 2019;73(02):187–193

32 Sheean PM, Peterson SJ, Gomez Perez S, et al. The prevalence of
sarcopenia inpatientswithrespiratory failureclassifiedasnormally
nourished using computed tomography and subjective global
assessment. JPEN J Parenter Enteral Nutr 2014;38(07):873–879

33 Lenchik L, Boutin RD. Sarcopenia: beyond muscle atrophy and
into the new frontiers of opportunistic imaging, precision medi-
cine, and machine learning. Semin Musculoskelet Radiol 2018;22
(03):307–322

34 Miller AL, Min LC, Diehl KM, et al. Analytic morphomics corresponds
to functional status in older patients. J Surg Res 2014;192(01):19–26

35 Zarinsefat A, Terjimanian MN, Sheetz KH, et al. Perioperative
changes in trunkmusculature and postoperative outcomes. J Surg
Res 2014;191(01):106–112

36 Boutin R, Katz J, Chaudhari A, et al. Significance of sarcopenia in
soft-tissue sarcoma patients: do skeletal muscle and fat measures
of body composition on routine ct exams help predict clinical
outcomes? Paper presented at: Radiological Society of North
America 2014 Scientific Assembly and Annual Meeting; Novem-
ber 30 to December 5, 2014; Chicago, IL

37 Ng TP, Feng L, Nyunt MSZ, et al. Nutritional, physical, cognitive,
and combination interventions and frailty reversal among older
adults: a randomized controlled trial. Am J Med 2015;128(11):
1225–1236.e1

38 Casey CM, Parker EM, Winkler G, Liu X, Lambert GH, Eckstrom E.
Lessons learned from implementing CDC’s STEADI falls prevention
algorithm in primary care. Gerontologist 2017;57(04):787–796

Journal of Gastrointestinal and Abdominal Radiology ISGAR © 2024. The Author(s).

Sarcopenia Assessment using Deep Learning Rengan et al.

https://www.icmr.nic.in/guidelines/ICMR_Ethical_Guidelines_2017.pdf
https://www.icmr.nic.in/guidelines/ICMR_Ethical_Guidelines_2017.pdf

