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Abstract Objectives The aim of this study is to evaluate computed tomography texture
analysis (CTTA) onmultiphase CTscans for distinguishing clear cell renal cell carcinoma
(ccRCC) from non-ccRCC and predicting Fuhrman’s grade in ccRCC using open-source
Python libraries.
Methods Conducted retrospectively, the study included 144 patients with RCCs (108
ccRCCs and 36 non-ccRCCs) who underwent preoperative multiphasic CT. Ninety
ccRCCs were categorized into 71 low-grade and 19 high-grade ccRCCs. Tumor was
marked on the largest axial tumor slice using “LabelMe” across different CT phases.
First- and second-order texture features were computed using Python’s scipy, numpy,
and opencv libraries. Multivariable logistic regression analysis and machine learning
(ML) models were used to evaluate CTTA parameters from different CT phases for RCC
classification. The best ML model for distinguishing ccRCC and non-ccRCC was
externally validated using data from the 2019 Kidney and Kidney Tumor Segmentation
Challenge.
Results Entropy in the corticomedullary (CM) phase was the best individual
parameter for distinguishing ccRCC from non-ccRCC with (F1 score: 0.83).
The support vector machine (SVM) based ML model, incorporating CM phase
features, performed the best, with an F1 score of 0.87. External validation for
the same model yielded an accuracy of 0.82 and an F1 score of 0.81. ML
models and individual texture parameters showed less accuracy for classifying
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Introduction

Renal cell carcinoma (RCC) is a prevalent adult cancer
characterized by multiple histological subtypes, with clear
cell RCC (ccRCC) being the most common and aggressive
form.1–3 Accurate subtyping and grading of RCCs are vital for
prognosis and individualized treatment, including novel
therapies like tyrosine kinase and vascular endothelial
growth factor inhibitors.4–7 However, current diagnostic
methods such as renal mass biopsy are invasive and often
unreliable, while imaging techniques like multiphasic com-
puted tomography (CT) and magnetic resonance imaging
(MRI) suffer from high subjectivity and overlapping
findings.8–13

Recent advancements in texture analysis offer a noninva-
sive and objective method to analyze tumor heterogeneity
through CT texture analysis (CTTA), which has shown poten-
tial in predicting RCC subtypes and grades.14–20 Despite
promising results, the clinical utility of CTTA is hampered
by variations in imaging protocols and software across
studies, underscoring the need for a robust, generalizable
model using open-source tools.21,22Machine learning (ML), a
powerful branch of artificial intelligence, can significantly
enhance CTTA by enabling the extraction and analysis of
complex, high-dimensional data patterns not readily appar-
ent to human observers.23 This capability potentially allows
for the detection of subtle diagnostic markers that improve
the accuracy of RCC subtyping and grading.18,19

Therefore, in this study, we utilized open-source Python
libraries to conduct CTTA for subtyping RCC and predicting
its grade. We independently analyzed all available CT con-
trast phases—corticomedullary, nephrographic, and noncon-
trast images, as well as virtual noncontrast images obtained
from dual-energy CT scans. Subsequently, we developed ML
models based on different architectures using diverse tex-
ture parameters extracted from each of these contrast
phases.

Methods

CT dataset retrieval: The institutional review board gave its
clearance to conduct this retrospective observational study.
Between January 2016 and November 2021, we searched our
hospital’s pathology report database for histopathological
nephrectomy specimens with RCC. To categorize RCCs into
ccRCCs and non-ccRCCs and to further grade ccRCCs using
the Fuhrman classification system, these histopathological
reports were used as reference standards. Abdominal CT

images of these patients were collected from our hospital’s
picture archiving and communication system (PACS) using
their hospital identification numbers. The study excluded
patients who did not have a baseline preoperative scan in the
PACS. In total, 144 RCC patients who had a preoperative
abdomen CT performed at our hospital and subsequently
underwent surgery were included in the analysis. Of the 144
RCCs that were included in the study, 36 (including 30
papillary and 6 chromophobe RCCs) were non-ccRCCs and
108 were ccRCCs. Seventy-one of the 108 ccRCCs were
classified as low grade (Fuhrman grades I–II), whereas 19
were classified as high grade (Fuhrman grades III–IV). Eigh-
teen ccRCCs were not graded in the pathology reports and
were therefore not included in the analysis of the Fuhrman
grade correlation. The inclusion and exclusion of the CTscans
and thefinal number of analyzed CTscans in different phases
are summarized in ►Fig. 1.

CT protocol: Using a dual-source dual-energy 2�128 sec-
tion multidetector CT scanner (Somatom Definition Flash,
Siemens Healthineers, Germany), multiphase CT imaging
was carried out. A noncontrast CT (NCCT) scan is the first
step in the current standardized renal mass protocol used in
our department. Corticomedullary (CM) and nephrographic
(NP) phase images are then obtained at 25 to 30 and 60 to
70 seconds, respectively, following intravenous injection of
100mL of iodinated contrast (Omnipaque 350, GEHealthcare)
through a peripheral line at 3 to - mL/s. Delayed excretory
phase images areobtainedafter 4 to 5minutes inpatientswith
suspicion of renal collecting system involvement. However,
the sameprotocolwasnot followed for all RCCpatients over all
the previous years forwhich theCTscanswere collected. Thus,
for eachpatient, all the available phases of theCTwere used for
the study except the delayed phase images due to the avail-
abilityofonlya small number of scanswith this phase (only for
10of the144patients). Virtualnoncontrast (VNC) imageswere
obtained from the dual-energy scan acquisition wherever
available. The retrieved CT scans were made anonymous by
removing the Digital Imaging and Communications in Medi-
cine (DICOM) metadata and reassigning them with a new
unique identity (ID) number for the study.

Computed Tomography Texture Analysis Workflow

• Manual tumor annotation: To manually annotate tumors,
we extracted the biggest tumor cross-section from each of
the available CT phase images and saved it as a separate
Joint Photographic Experts Group (JPEG) file for each
patient. A single radiologist annotated the tumor on these

low- versus high-grade ccRCCs, with a maximum F1 score of 0.76 for the CM
phase SVM model. Other CT phases yielded inferior results for both classification
tasks.
Conclusion CTTA employing open-source Python tools is a viable tool for differenti-
ating ccRCCs from non-ccRCCs and predicting ccRCC grade.
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CT images (A.G., with 9 years of experience in body
imaging). Using the freely accessible user-friendly
“LabelMe” software, tumor margins were manually
marked in each exported JPEG file using the “Polygonal
ROI” (region of interest) tool.24 This annotation was done
for all the available CT phases for each subject except for
the delayed phase. For each case, the manual annotation
was done only for the surgically resected primary renal
tumor postimaging with available corresponding pathol-
ogy report, regardless of the bilaterality or presence of
tumor metastases. In the cases with more than one
resected primary tumors, the largest measuring tumor
was chosen for annotation. Next, for each image, the
annotated datawere saved as a JavaScript Object Notation
(JSON)file. The associated label, the related instance of the
tumor, the convex hull of the annotated tumor (in terms of
the location of the tumor’s boundary pixels in the picture),
and other details about the image (like a slice of the CT
scan) were all recorded in the JSON file. Based on these
data, further features were extracted, and the tumor’s
features were analyzed.

• Image preprocessing: The CT images were prepared for
subsequent texture analysis with adherence to standard
practices in medical imaging by following the steps:
1. Creating a blank canvas: A base image was created to

match the dimensions and resolution specified in the
JSON file, which contained relevant data about the CT
images and tumor annotations.

2. Annotation image development: Using the convex hull
annotation, the tumor region was demarcated on the
CT images. Pixels within the tumor were assigned a
value of 255, while surrounding areas were set to 0,
clearly isolating the tumor.

3. Image processing with OpenCV25: The CT slice image
under consideration (IUC) was processed using the
OpenCV library, converting it into an 8-bit unsigned
integer format for computational analysis.

4. Normalization: The IUC was normalized to match the
specifications in the JSON file, ensuring consistency in
image dimensions and quality.

5. Mask image creation: A bitwise AND operation was
performed to combine the annotation image with the
IUC, resulting in a “mask image” that exclusively con-
tained tumor pixels.

6. Classification: The mask image was categorized as
either ccRCC or non-ccRCC based on the classifications
in the JSON file. Only the mask image and its label were
used for further analysis.

These steps allowed for precise isolation of the tumor
regions, enabling targeted analysis of the tumor
characteristics.

• CT-based texture analysis:►Fig. 2 visualizes the represen-
tative edge map, histogram of oriented gradients (HOG),
and heatmap of various contrast phases of a single CTslice
of a patient with RCC. These visualizations highlight the
unique changes in the appearance of these features,
emphasizing the potential of texture parameters as dis-
tinct markers for CTTA.
� Analyzing texture using python libraries: We

employed powerful Python libraries—scipy, numpy,
and opencv—to calculate specific texture param-
eters of the tumor. These libraries are sophisticated
digital tools that help us extract meaningful pat-
terns from the images.

� Processing the “mask image”: The “mask image,” which
contains only the tumor area, was read using the opencv
library and analyzed as a matrix (a grid of numbers).
This approach allows us to perform detailedmathemat-
ical calculations on the image.

� Calculating the first- and second-order texture features:
The first-order features, such as mean, variance, and
standard deviation, were computed on this image using
the numpy library. The second-order features such as
energy, entropy, and smoothness were calculated using
the scipy library.

• Statistical analysis: The generated texture parameters
were grouped based on their corresponding labels
(ccRCC vs. non-ccRCC). The entries of ccRCC were further

Fig. 1 Inclusion and exclusion of computed tomography scans in the study. ccRCC, clear cell renal cell carcinoma; CM, corticomedullary; CT,
computed tomography; NCCT, noncontrast computed tomography; NP, nephrographic; VNC, virtual noncontrast.
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divided into two subgroups, namely low- and high-grade
ccRCCs, wherever available. These parameters were then
analyzed using multivariable logistic regression analysis
computed using the standard matplotlib, seaborn, and
scipy libraries.26,27 Various statistical measures like
mean, median, mode, interquartile deviation, and stan-
dard deviation were computed for each of the texture
parameters, using the scipy library. The corresponding p-
values and F1 scores were recorded separately for both
the classification tasks. F1 score refers to the harmonic
mean of precision (the proportion of true positive results
among all positive calls) and recall (the proportion of
true positive results among all actual positives), provid-
ing a single score to gauge a test’s accuracy in correctly
identifying true cases, while minimizing false positives
and false negatives. The seaborn and matplotlib libraries
were used to plot the receiver operating characteristic
(ROC) curves for the texture parameters for the classifi-
cation of ccRCC versus non-ccRCCs as well as high- versus
low-grade ccRCCs.

Machine Learning Models
We trained and compared various ML models, including
support vector machine (SVM), random forest (RF), Naive
Bayes (NB), Adaboost (AB), and logistic regression (LR), for
RCC subtyping (ccRCC vs. non-ccRCC) and grade prediction

(low-grade vs. high-grade) using texture parameters derived
from each CT phase separately.28

• Normalization and feature scaling: Each texture parameter
was normalized between 0 and 1 using a technique called
min-max normalization. This step is crucial as it puts all
parameters on an even scale, allowing each one to con-
tribute equally to the model, regardless of their original
scale or units.

• Training of the model: In constructing our ML models, we
did not add any prior model. The prediction label for each
of the samples in the test dataset was considered as
another feature. We used a 70:20:10 split for training,
validation, and test datasets, respectively. To address the
issue of class imbalance, we employed a weighted loss
function, with weights inversely proportional to the
number of samples in each class, ensuring better repre-
sentation of the minority class during training. We per-
formed leave-one-out cross-validation (LOO-CV) within
the training and validation sets. Specifically, for each LOO-
CV iteration, we used four samples for validation (3 ccRCC
and 1 non-ccRCC) and trained themodel on the remaining
samples. This process was repeated until every sample
was used for validation at least once. We report the mean
validation performance by averaging the outputs from
each training iteration. The training process was

Fig. 2 The edge map, histogram of oriented gradients, and heat map of the annotated tumor on various contrast phases of a single computed
tomography slice. CM, corticomedullary; NC, noncontrast; NP, nephrographic; VNC, virtual noncontrast.
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conducted using a standard ML library called sklearn,
which provides tools for building and deploying ML
models.

• Statistical analysis: The statistical analysis was repeated
on the trainedMLmodels, similar to each of the individual
texture parameters. This repetition of analysis is an
important step to validate and compare the performance
of our ML models among the different architectures and
with the initial texture parameter analysis. The study
workflow is summarized in ►Fig. 3.

Externalvalidation: to assess thegeneralizabilityofourbest
performing ML model, we conducted an external validation.
For this purpose, we utilized the public dataset containing CT
scans from the 2019 Kidney and Kidney Tumor Segmentation
Challenge (KiTS19).29 The dataset also provides RCC histopa-
thology type based on surgical specimens. To assess the ML
models, a total of 40 cases each for ccRCC and non-ccRCC
subtypes were randomly selected from the dataset. The CM
phase CT scans were available for all of these cases, with NCCT
scans available only in a small minority. Thus, we conducted
themodel testing and analysisusingonly theCMphase images
in the public dataset. The tumor texture features were
extracted using the same feature extraction technique as
applied to the in-house dataset. The trained models were
then tested for RCC subtyping (ccRCC vs. non-ccRCC) using
these texture features from this external dataset. Since the
dataset did not provide information about the pathological
grading of ccRCC cases, the external validation of the models
was performed only for classification of ccRCC versus non-
ccRCC and not grade prediction of ccRCC.

Results

Patient demography and tumor characteristics: The mean age
of the 108 people who had ccRCCs was 67.1 years

(range: 51–72 years), and the average size of their cancer
was 6.8 cm (standard deviation:�2.6 cm). There were 61
men and 47 women in the group. The average patient age for
non-ccRCCs (n¼36) was 64.9 years (range: 48–69 years),
with a male-to- female ratio of 19:17 and an average tumor
size of 6.6 cm (standard deviation:�2.8 cm).

RCC Subtyping (ccRCC vs. Non-ccRCC)

• Available CT phases: For the included 144 patients (108
ccRCCs and 36 non-ccRCCs), various CT phases available
were the following: NCCT (n¼142; 106 ccRCCs and 36
non-ccRCCs); CM phase (n¼134; 100 ccRCCs and 34 non-
ccRCCs); NP phase (n¼141; 106 ccRCCs and 35 non-
ccRCCs); and VNC (n¼113; 89 ccRCCs and 24 non-
ccRCCs).

• Texture parameters on each CT phase: Entropy of the CM
phase was observed to be the best performing individual
parameter in classifying the ccRCC against non-ccRCC
with an F1 score of 0.83, area under the curve (AUC) of
0.74, sensitivity of 0.81, and specificity of 0.95. Other
individual texture parameters showed modest perfor-
mance in classifying the ccRCC against non-ccRCC, with
F1 scores ranging between 0.49 and 0.71 and AUC ranging
between 0.43 and 0.68. The performances of various CTTA
parameters derived from different CT phases for classifi-
cation of ccRCC vs non-ccRCC are summarized in►Table 1.

• Performance of ML models based on each CT phase: The
various ML model architectures (SVM, RF, NB, AB, LR)
considering all the texture features of the CM phase
showed significant improvement in classifying the ccRCC
against non-ccRCC with the best F1 score of 0.87, AUC of
0.79, sensitivity of 0.87, and specificity of 1.00, for the
SVM model. The ML model architectures considering
texture features of other phases showed modest perfor-
mance with F1 scores ranging between 0.52 and 0.79 and

Fig. 3 Study workflow. (A) Manual annotation of the tumor by the radiologist. (B) Image preprocessing followed by texture analysis. ML,
machine learning; SVM, support vector machine.
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AUC scores ranging between 0.49 and 0.71. The perform-
ances of various ML architectures based on texture
parameters from different CT phases for classification of
ccRCC versus non-ccRCC are summarized in►Table 2. The
ROC curve and confusion matrix for the “entropy” of the
CM phase and the best performing SVM model generated
using the texture features of the CM phase for classifica-
tion of ccRCC versus ccRCC are shown in ►Fig. 4.

• External validation results for RCC subtyping: The best
performing ML model on the internal dataset, that is,
the SVM model on the CM phase, was selected for testing
on the public dataset. The model achieved an accuracy of
0.82, F1 score of 0.81, sensitivity of 0.81, and specificity of
0.82 on the external dataset for classification of ccRCC
versus non-ccRCC.

Fuhrman Grade Prediction for ccRCCs (Low vs. High
Grade)

• Available CT phases: For the total of 90 RCCs (71 low grade
and 19 high grade) with available Fuhrman grading,
various CT phases available were the following: NCCT
(n¼88; 69 low grade and 19 high grade); CM phase
(n¼82; 66 low grade and 16 high grade); NP phase
(n¼88; 69 low grade and 19 high grade); and VNC
(n¼77; 60 low grade and 17 high grade).

• Texture parameters on each CT phase: The entropy of the
CM phase was observed to be the best performing indi-
vidual parameter in classifying the low-grade ccRCC
against high-grade ccRCC with a modest F1 score of
0.67, AUC of 0.62, sensitivity of 0.71, and specificity of
0.65. Other individual texture parameters showed poor
performance in classifying the low-grade ccRCC against
high-grade ccRCC, with F1 scores ranging between 0.41
and 0.59 and AUC ranging between 0.38 and 0.53. The
performances of various CTTA parameters derived from
different CT phases for classification of low- versus high-
grade ccRCC are summarized in ►Table 3.

• Performance of ML models based on each CT phase: The
SVMmodel considering all the texture features of the CM
phase showed some improvement in classifying the high-
grade ccRCC against low-grade ccRCC with an F1 score of
0.76, AUC of 0.65, sensitivity of 0.85, and specificity of
0.69. The SVM models considering texture features of
other phases showed poor performance, with F1 scores
ranging between 0.6 and 0.64 and AUC scores ranging
between 0.39 and 0.61. The performances of various SVM-
based models based on texture parameters from different
CT phases for classification of high- versus low-grade
ccRCC are summarized in ►Table 4. The ROC curve and
confusion matrix for the “entropy” of the CM phase and
ML model generated using the texture features of the CM

Table 1 Performance of CTTA parameters derived from various CT phases for RCC subtyping (ccRCC vs. non-ccRCC)

Phase Feature ccRCC Non-ccRCC p-Value F1 score

Median Standard deviation Median Standard deviation

CM phase (n¼134) Mean 159.74 24.6 137.31 27.77 0.0006 0.71

Variance 1,146.39 642.88 358.24 435.4 <0.0005 0.71

Energy 1.61 1.34 1.41 2.09 0.3506 0.67

Entropy 6.89 0.36 6.19 0.37 <0.0005 0.83

Smoothness 0.99 0.02 0.98 0.03 0.0038 0.6

NP phase (n¼ 141) Mean 156.83 20.4 145.51 21.36 0.0005 0.53

Variance 623.5 387.1 381.93 308.07 0.0008 0.66

Energy 1.51 1.29 1.69 1.93 0.2272 0.63

Entropy 6.58 0.37 6.25 0.4 0.0012 0.59

Smoothness 0.98 0.03 0.98 0.03 0.3132 0.53

NCCT (n¼ 142) Mean 79.4 14.35 92.51 19.6 0.0098 0.44

Variance 41.74 167.42 45.24 107.16 0.9783 0.65

Energy 0.63 0.68 0.67 1.68 0.0178 0.66

Entropy 4.71 0.57 4.76 0.65 0.4184 0.66

Smoothness 0.97 0.03 0.97 0.03 0.7539 0.67

VNC (n¼113) Mean 78.61 4.16 78.2 2.61 0.6423 0.63

Variance 38.13 106.03 33.22 14.17 0.4465 0.59

Energy 0.56 0.44 0.45 0.48 0.9884 0.49

Entropy 4.67 0.24 4.55 0.23 0.0642 0.71

Smoothness 0.97 0.03 0.97 0.02 0.9859 0.65

Abbreviations: ccRCC, clear cell renal cell carcinoma; CM, corticomedullary; CT, computed tomography; CTTA, computed tomography texture
analysis; NCCT, noncontrast computed tomography; NP, nephrographic; RCC, renal cell carcinoma; VNC, virtual noncontrast.
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Table 2 Performance of various ML model architectures based on texture parameters from various CT phases for RCC subtyping
(ccRCC vs. non-ccRCC)

Phase ccRCC Non-ccRCC p-Value F1 score

Median Standard deviation Median Standard deviation

SVM CM phase (n¼ 134) 0.92 0.17 0.42 0.27 <0.0005 0.87

NP phase (n¼141) 0.82 0.12 0.66 0.17 <0.0005 0.79

NCCT (n¼142) 0.78 0.09 0.74 0.16 <0.0005 0.66

VNC (n¼113) 0.79 0.06 0.76 0.07 0.05116 0.52

Random forest CM phase (n¼ 134) 0.13 0.14 0.60 0.26 <0.0005 0.81

NP phase (n¼141) 0.19 0.09 0.41 0.19 <0.0005 0.76

NCCT (n¼142) 0.21 0.06 0.35 0.14 <0.0005 0.70

VNC (n¼113) 0.18 0.04 0.31 0.12 <0.0005 0.64

Naive Bayes CM phase (n¼ 134) 0.84 0.28 0.26 0.36 <0.0005 0.80

NP phase (n¼141) 0.75 0.27 0.48 0.33 <0.0005 0.76

NCCT (n¼142) 0.87 0.23 0.74 0.35 0.011 0.67

VNC (n¼113) 0.36 0.31 0.27 0.26 0.216 0.53

Adaboost CM phase (n¼ 134) 1.0 0.32 0.0 0.416 <0.005 0.79

NP phase (n¼141) 1.0 0.42 0.0 0.300 <0.005 0.70

NCCT (n¼142) 0.47 0.49 0.0 0.09 <0.005 0.64

VNC (n¼113) 1.0 0.49 0.2 0.32 <0.005 0.60

Logistic
regression

CM phase (n¼ 134) 1.0 0.492 0.0 0.237 <0.005 0.77

NP phase (n¼141) 0.0 0.400 0.0 0.13 0.109 0.73

NCCT (n¼142) 0.13 0.34 0.02 0.165 0.012 0.69

VNC (n¼113) 0.89 0.500 0.200 0.300 <0.005 0.64

Abbreviations: ccRCC, clear cell renal cell carcinoma; CM, corticomedullary; CT, computed tomography; ML, machine learning; NCCT, noncontrast
computed tomography; NP, nephrographic; VNC, virtual noncontrast.

Fig. 4 Performance of the entropy of the corticomedullary (CM) phase and machine learning (ML) model generated using all the texture
parameters of the CM phase to classify clear cell renal cell carcinoma (ccRCC) against non-ccRCC. (A) Receiver operating characteristic curve. (B)
Confusion matrix of the ML model. (C) Confusion matrix of the entropy of the CM phase.
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phase for the classification of high- ccRCC versus low-
grade ccRCC are shown in ►Fig. 5. However, we were
unable to successfully train other ML models (RF, NB, AB,
LR), under the same conditions for grade prediction of
ccRCC. Thesemodels likely require a larger amount of data
to accurately capture patterns and prevent overfitting,
making them less suitable for small datasets in this
context.

Discussion

The present study shows that texture parameters generated
from CTTA using open-source Python modules perform well

for both RCC subtyping and grading of ccRCC, with the
entropy values on CM phase CT images achieving the highest
performance. In addition,ML-based predictionmodels based
on the CTTA parameters further enhance the results for both
the classification tasks.

Entropy in the CM phase, reflecting pixel irregularity and
texture complexity, was the most distinguishing feature for
ccRCCsubtypeandgradeprediction.14These results correspond
with the standard technique of reading contrast-enhanced CT
forRCCcharacterization—where increasedtumorheterogeneity
is regarded to favor a diagnosis of ccRCC and point toward a
higher-grade cancer. However, qualitative evaluations of

Table 3 Performance of CTTA parameters derived from various CT phases for ccRCC Fuhrman grade prediction (low grade vs. high
grade)

Phase Feature High-grade ccRCC Low-grade ccRCC p-Value F1 score

Median Standard deviation Median Standard deviation

CM phase (n¼82) Mean 161.98 19.34 163.03 25.6 0.64 0.58

Variance 976 610.83 1,192.8 648.18 0.2 0.56

Energy 2.67 1.42 1.34 1.24 0 0.49

Entropy 6.84 0.34 6.9 0.33 0.22 0.67

Smoothness 0.99 0.03 0.99 0.02 0.7 0.41

NP phase (n¼ 88) Mean 149.73 21.38 159.27 20.48 0.53 0.5

Variance 451.06 415.71 685.07 379.66 0.2 0.55

Energy 2.11 1.05 1.36 1.32 0.18 0.54

Entropy 6.42 0.38 6.66 0.38 0.09 0.6

Smoothness 0.99 0.02 0.98 0.03 0.47 0.59

NCCT (n¼ 88) Mean 81.4 10.59 78.61 13.27 0.79 0.52

Variance 38.92 30.66 42.36 115.4 0.24 0.56

Energy 0.76 0.45 0.5 0.69 0.18 0.58

Entropy 4.68 0.34 4.74 0.55 0.28 0.57

Smoothness 0.97 0.02 0.96 0.04 0.28 0.52

VNC (n¼77) Mean 81.31 3.44 77.83 4.37 0.05 0.52

Variance 38.65 17.21 38.2 13.72 0.94 0.51

Energy 0.71 0.41 0.48 0.4 0.01 0.55

Entropy 4.68 0.27 4.67 0.22 0.9 0.54

Smoothness 0.97 0.02 0.97 0.04 0.32 0.51

Abbreviations: ccRCC, clear cell renal cell carcinoma; CM, corticomedullary; CT, computed tomography; CTTA, computed tomography texture
analysis; NCCT, noncontrast computed tomography; NP, nephrographic; SVM, support vector machine; VNC, virtual noncontrast.

Table 4 Performance of SVMMLmodels based on texture parameters from various CT phases for ccRCC Fuhrman grade prediction
(low grade vs. high grade)

Phase High-grade ccRCC Low-grade ccRCC p-Value F1 score

Median Standard deviation Median Standard deviation

CM phase (n¼82) 0.77 0.23 0.87 0.13 0.03 0.76

NP phase (n¼ 88) 0.74 0.15 0.84 0.12 0.05 0.64

NCCT (n¼ 88) 0.73 0.11 0.79 0.07 0.01 0.6

VNC (n¼77) 0.78 0.07 0.79 0.05 0.15 0.61

Abbreviations: ccRCC, clear cell renal cell carcinoma; CM, corticomedullary; CT, computed tomography; ML, machine learning; NCCT, noncontrast
computed tomography; NP, nephrographic; SVM, support vector machine; VNC, virtual noncontrast.
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heterogeneity are extremely individualized and vulnerable to
biases.10,12 Therefore, objective measures such as entropy can
help in the consistent and accurate evaluation of cancer com-
plexity, leading to abetter characterizationof RCC. Thepotential
of entropy values being able to classify RCC subtypes as well as
ccRCC grades in the same patient cohort is a significant finding
from our study. Our results are in linewith the previous studies
investigating the use of CTTA in RCC characterization.15,17,30

However, amajorpoint tonote is thatmostof thesestudiesused
either specific software (like MaZda and pyRadiomics) or in-
house algorithms for the extraction of texture parameters, and
only a few compared the different CT phases for CTTA. As noted
byDoshi et al, there is a significant variation in thewaydifferent
software packages compute and process image data, and this
limits the generalizability and clinical reliability of texture
parameters.22 However, unlike most studies that use proprie-
tary software, we employed open-source Python libraries,
ensuring greater cost-effectiveness and reproducibility. Addito-
nally, we did not use third-order texture features, as first-
andsecond-order featuresprovidedsufficientclinically relevant
insights, while being less computationally intensive and more
interpretable.21

Of the various ML model architectures tested in this study,
the SVM approach exhibited the best performance in both the
classification tasks (i.e., ccRCC vs. non-ccRCC andhigh- vs. low-
grade ccRCC). Budai et al reported the best performance of
their ML model on the CM phase for differentiation between
ccRCC and non-ccRCC, with an AUC of 0.87 for the internal test
set and AUC of 0.83 on the external validation set.18 Our ML
prediction model also fared the best on the CM phase with an
AUC of 0.79. There was, however, only average success with
ML-based grade prediction for ccRCC, with an AUC of 0.65.

CTTA using open-source tools offers a cost-effective and
scalable solution for improving RCC characterization accuracy.
By providing objective measures like entropy and ML models,
CTTA can help radiologists reduce subjective biases, particu-
larly in RCC subtyping and ccRCC grading, complementing
qualitative evaluations for more consistent diagnoses and
better treatment planning. Open-source Python tools ensure
adaptability, transparency, and easier integration into clinical
practice. The SVMmodel achieved an accuracy of 0.82 and an
F1scoreof0.81onexternaldata, closelymatching the in-house
F1 score of 0.87. This minor variation highlights the model’s
robustness andvalidates its applicability in real-world settings
with diverse data. Our study has a few drawbacks. There was
highly variable availability of postcontrast phases for patients
due to the study’s retrospective nature and collection of scans
over a long period. Thus, analysis of combination of texture
features from various CT phases could not be performed. Only
one observer performed the tumor annotation; thus, interob-
server agreement could not be derived. Interobserver variabil-
ity could impact the reproducibility and reliability of the
tumor annotations, potentially introducing bias in the texture
analysis results. This limitationmay affect the generalizability
of the findings, as consistency across different observers is
crucial for broader clinical applicability. A single axial tumor
slice was used for analysis instead of the three-dimensional
(3D) volumetric approach due to time and labor constraints.
Exclusively operated RCC cases were analyzed, which may
have caused a selection bias toward larger and higher-grade
tumors. Additionally, the small number of ccRCC cases with
Fuhrman grade data restricted the sample size, limiting ML
model exploration beyond SVM for grade prediction and
external validation. Future studies should aim for multicenter

Fig. 5 Performance of the entropy of the corticomedullary (CM) phase and machine learning (ML) model generated using all the texture
parameters of the CM phase to classify high-grade clear cell renal cell carcinoma (ccRCC) against low-grade ccRCC. (a) Receiver operating
characteristic curve. (b) Confusion matrix of the ML model. (c) Confusion matrix of the entropy of the CM phase.
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data collection, use a 3D volumetric approach based on
automated segmentation tools, and include multiple observ-
ers to improve generalizability and model performance.

Conclusion

CTTA employing open-source Python tools is practical and
offers promising results for differentiating ccRCCs from non-
ccRCCs and for grade prediction of ccRCCs, with the greatest
results being seen with CM phase CT acquisition. Further-
more, we created aMLmodel using common SVMalgorithms
that performed even better for CTTA-based RCC characteri-
zation, underscoring the value of integrating advanced
computational techniques in medical imaging analysis.
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