
Basic Statistics for Radiologists: Part 1—Basic Data
Interpretation and Inferential Statistics
Adarsh Anil Kumar1 Jineesh Valakkada1 Anoop Ayyappan1 Santhosh Kannath1

1Department of Imaging Sciences and Interventional Radiology, Sree
Chitra Institute of Medical Sciences, Trivandrum, Kerala, India

Indian J Radiol Imaging 2025;35(Suppl S1):S58–S73.

Address for correspondence Jineesh Valakkada, MD, Sree Chitra
Tirunal Institute for Medical Sciences and Technology,
Thiruvananthapuram, Kerala 695001, India
(e-mail: jineesh174@gmail.com).

Introduction

Adopting a systematic approach to statistical analysis is
essential for ensuring the accurate interpretation of data
and drawing valid conclusions from research studies. In the
field of radiology, statistics play a crucial role in enhancing
diagnostic precision, improving patient outcomes, and driv-
ing advancements in research. This primer offers a thorough
and condensed overview of key statistical concepts that are
pertinent to both radiologists and clinicians. The first part is
dedicated to discussing types ofdata, data distribution, descrip-
tive and inferential statistics, hypothesis testing, and sampling.
The second part delves into advanced statistical concepts such

as correlation and causality, regressionanalysis, survival curves,
and the analysis of diagnostic tests, encompassing contingency
tables and receiver operating characteristic (ROC) curves. This
primer not only serves as a foundational resource for grasping
basic statistical concepts but also aids in the interpretation of
various methodologies relevant to daily research endeavors.

Radiology has been at the forefront of technological
innovations and various advancements, focusing not only
on disease diagnosis but also on therapeutic interventions.
The conduct of research assessing the utility of imaging
techniques and their applications are crucial for shaping
clinical recommendations and establishing practice guide-
lines, both now and in the future.1 Understanding
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Abstract A systematic approach to statistical analysis is essential for accurate data interpretation
and informed decision-making in the rapidly evolving field of radiology. This review
provides a comprehensive overview of the fundamental statistical concepts for
radiologists and clinicians. The first part of this series introduces foundational elements
such as data types, distributions, descriptive and inferential statistics, hypothesis
testing, and sampling methods. These are crucial for understanding the underlying
structure of research data. The second part of this series delves deeper into advanced
topics, including correlation and causality, regression analysis, survival curves, and the
analysis of diagnostic tests using contingency tables and receiver operator character-
istic (ROC) curves. These tools are vital for evaluating the efficacy of imaging
techniques and drawing valid conclusions from clinical studies. As radiology continues
to push the boundaries of technology and therapeutic interventions, mastering these
statistical principles will empower radiologists to critically assess literature, conduct
rigorous research, and contribute to evidence-based practices. Despite the pivotal role
of statistics in radiology, formal training in these methodologies is still limited to a
certain extent. This primer aims to bridge that gap, providing radiologists with the
necessary tools to enhance diagnostic accuracy, optimize patient outcomes, and
advance the field through robust research.
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fundamental statistical principles will enable radiologists as
well as clinicians to critically assess existing literature and
make well-informed clinical decisions, which are the founda-
tions of evidence-based medicine.2 Similarly, the proper ap-
plication and interpretation of statistical methods are crucial
for carrying out scientifically rigorous studies. Nonetheless,
training in research methodology, particularly in statistics, is
generally limited throughout postgraduate medical training.3

Our objective is to provide an overviewof themost frequently
used data analysis methods found in radiology literature.

Types of Data

Statistical data can be broadly classified into two types:
quantitative and qualitative. Understanding the type of
data are crucial for selecting the appropriate statistical
method for analysis.4 Quantitative data refers to numerical
information that can be measured and counted. It can be
further subdivided into two types (►Fig. 1)5,6:

• Continuous data can take any value within a specified
range, allowing for the calculation of statistical measures
such as means and variances. For instance, in a study
measuring the size of tumors in breast cancer patients
before and after treatment, the tumor sizes are considered
continuous data because they can assume any value
within the range of possible measurements, such as 1.2,
2.5, 3.7 cm, and so on.

• On the other hand, discrete data consist of distinct
and separate values, often arising from counting process-

es. For example, the number of renal cysts present on
ultrasound images of different patients represents dis-
crete data. If one patient has three cysts and another has
five, these values are discrete data.

Qualitative data describe characteristics or categories that
cannot be quantified. They are also known as categorical data
and can be subdivided into two types5,6:

• Nominal data: These represent categories that do not have
an inherent order. This type of data is often used to classify
observations into distinct groups. For example, in a study
evaluating the choice of different imaging modalities for a
particular suspectedpathologyamong various radiologists,
the modalities (magnetic resonance imaging [MRI], com-
puted tomography [CT], ultrasound) are nominal data.

• Ordinal data: This type of data represents categorieswith a
meaningful order but no consistent difference among them.
It is useful for ranking observations but does not provide
information about the relative distance between ranks. For
example,whenevaluating patient satisfactionwith imaging
services, responses might be categorized as “poor,” “fair,”
“good,” or “excellent.” These categories have anatural order,
but the intervals between them are not necessarily equal.

Consider a study that examines the efficiency of different
radiology workflows. The study can collect both quantitative
and qualitative data. Quantitative data can be measured as
the time taken (in minutes) to complete a set of imaging
examinations, while qualitative data can be formulated as the
type of workflow (manual vs. automated). Statistical tests are

Fig. 1 Flowchart demonstrating the classification of types of data.
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more robust for quantitative data than for qualitative data. By
analyzing both types of data, the researcher can determine not
only which workflow is faster but also how the type of work-
flow affects overall efficiency as well as user satisfaction.

When gathering data for research, it is advisable to collect
the data as continuous variables rather than nominal vari-
ables when there is flexibility in organizing the data. For
instance, when recording the hypertensive status ofmultiple
patients, it is more advantageous to gather individual blood
pressure measurements rather than categorizing patients
as hypertensive or nonhypertensive. This approach offers
benefits such as greater statistical power, reduced informa-
tion loss, and increased flexibility in data transformation.

Distribution of Data

Understanding the distribution of data is essential for select-
ing appropriate statistical methods. Distribution describes
how the data values are spread across and thereby provides
insight into underlying patterns as well as trends within the
dataset.7

Normal distribution (also known as Gaussian distribution)
basically links frequency distribution to probability distribu-
tion, representing how near or how far distribution of the
observed sample is from the ideal distribution of a population-
based sample. It is a symmetrical, bell-shaped curve where
most of the data points cluster around the mean. Many
biological measurements, like blood pressure or body temper-
ature, followanormaldistribution.Mean in suchdataoccupies
the central position within the distribution. Standard devia-
tion (SD) indicates how data are dispersed around the mean.
Larger the SD, wider and flatter the curve. Two SDs cover 95%
and3SDscover99.7%of theobservations. Thepropertiesof the
normal distribution allow for the application of various statis-
tical techniques, including parametric tests.7,8

Skewness is ameasure of asymmetry and deviation from a
normal distribution. Data can be skewed if they are not
symmetrically distributed. Skewness can be positive (right
skewed) or negative (left skewed; ►Fig. 2).9

Right-skewed distribution: Most data points are concen-
trated on the left with a long tail to the right. For example, in a
dataset measuring the duration of hospital stays for patients

Fig. 2 Bar charts demonstrating types of data distribution. Normal distribution of data is represented by the typical symmetrical bell-shaped
curve, e.g., in a typical healthy population, liver attenuation values (in HU) usually center around a mean of 50 to 60 HU, with most people falling
close to this value. There are few individuals with extremely high or low attenuation values, leading to the characteristic bell-shaped, symmetrical
curve of a normal distribution. Positively skewed distribution causes the peak of the curve to shift toward the positive left side, e.g., in a dataset
measuring duration of hospital stays for patients undergoing different interventional radiology procedures, a right-skewed distribution might
indicate that while most patients are discharged within a few days, a smaller number of patients have significantly longer stays due to
complications. Negatively skewed distribution causes it to shift toward the negative right side, e.g., if age at diagnosis for a particular disease
shows a left-skewed distribution, it might indicate that most diagnoses occur later in life, with a few cases occurring at younger ages. Bimodal
distribution with two peaks on the right and left side, for example, distribution of heights in a mixed-gender sample.
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undergoing different interventional radiology procedures, a
right-skewed distribution might indicate that while most
patients are discharged within a few days, a smaller number
ofpatients have significantly longer stays due to complications.

Left-skewed distribution:Most data points are concentrat-
ed on the rightwith a long tail to the left, such as in the case of
age at diagnosis for a particular disease. For example, if age at
diagnosis for a particular disease shows a left-skewed distri-
bution, it might indicate that most diagnoses occur later in
life, with a few cases occurring at younger ages.

A bimodal distribution has two peaks. This can occur when
data are collected from two different populations. For exam-
ple, the distribution of heights in a mixed-gender sample.

Presentation of Data

Data can be presented in three ways: as text, in tabular form,
or in graphical form (►Fig. 3)4,10:

• Text: This is themain method of conveying information to
explain results and trends, aswell as to provide contextual
information.

• Table: It helps in the representation of larger amounts of
data in an engaging, easy-to-read and coordinated man-
ner. The data are arranged in rows and columns.

• Graphical form: It is a powerful tool to communicate
research results and to gain information from data. It
may be in the form of a bar chart, pie chart, line diagram,
scatter plot, or histogram.

Descriptive and Inferential Statistics

Once you have gathered data and organized it according to its
type and distribution, the next step is to analyze the data.
One important aspect of statistics involvesmaking assertions
about a population. Since it is often impractical to obtain data
from an entire population, a sample is typically taken
instead. Descriptive statistics are then used to characterize
this sample, including measures such as the mean value and
the degree of dispersion. However, characterizing the sample
alone does not provide insight into the population as a
whole; this is the domain of inferential statistics. In this
case, a sample is drawn from the population with the aim of
drawing broader conclusions about the population based on

Fig. 3 Examples of different forms of data presentation. (A) Bar chart, which is used to compare the frequency or values of different categories,
for example, comparing the number of patients with different types of brain tumors [gliomas, meningiomas, metastases] diagnosed over a year.
(B) Pie chart, which is used to show proportions or percentages of a whole, for example, showing the percentage distribution of different imaging
modalities (magnetic resonance imaging [MRI], computed tomography [CT], ultrasound, X-ray) used in a hospital’s radiology department. (C)
Line diagram, which is used to track changes or trends over time, for example, tracking the trend of average radiation dose per CT scan in a
radiology department over time (across months or years). (D) Scatter plot, which is used to explore relationships or correlations between two
continuous variables, for example, plotting the relationship between tumor size (in cm) and patient survival time (in months) after diagnosis of a
malignant tumor. (E) Histogram, which is sed to display the distribution of a continuous variable by grouping data into bins, for example,
displaying the distribution of radiodensity values (in Hounsfield units) for liver tissue on CT in a group of patients to assess for fatty liver disease.
(F) Box and whisker plot, which is used to show the spread, central tendency, and outliers in a dataset, for example, comparing the distribution of
radiologists’ interpretation times (in minutes) for reading brain MRI across different experience levels (junior, senior, expert).

Indian Journal of Radiology and Imaging Vol. 35 Suppl. S1/2025 © 2025. Indian Radiological Association. All rights reserved.

Statistics for Radiologists Kumar et al. S61



this sample. Thus, inferential statistics seek to deduce the
unknown parameters of the population from the known
parameters of a sample, going beyond the immediate data
unlike descriptive statistics. To accomplish this, inferential
statistics utilize hypothesis tests such as the t-test or
analysis of variance (ANOVA). Both are crucial for analyzing
data and drawing meaningful conclusions from them
(►Fig. 4).11

Descriptive Statistics

Descriptive statistics summarize and describe features of a
particular dataset using statistical characteristics, graphics,
charts, or tables. They provide simple summaries about the
sample and its measures, thereby offering critical insights
into central tendency, dispersion, and shape of data distri-
bution. It is important to understand that in descriptive
statistics only properties of the sample are evaluated, and
we do not draw conclusion about other points in time or the
population. Descriptive statistics are further broadly divided
into two subtypes: location parameters (i.e., measures of
central tendency) and dispersion parameters (i.e., measures
of variability). Parameter basically represents a measurable
characteristic of the population.

Measures of Central Tendency
Measures of central tendency basically describe where
the center of a sample is or where most of the sample
is.12–14

Mean: it represents the average of all data points, which is
calculated by summing all the values and dividing by the
number of observations. The mean can be calculated only for
metric variables and is sensitive to outliers. For example, if a
radiologist measures the mean size of the liver in a sample of
five patients with glycogen storage disorders as 15, 16, 17,
18, and 19 cm, themean liver size is (15þ16þ17þ18þ19)/
5¼17 cm.

Median: when data points are ordered from smallest to
largest, the middle value is termed as median. The variables
must have an ordinal or metric scale level for calculating

median. The median is less affected by outliers and skewed
data. For the aforementioned example of liver size in a
sample of five patients with glycogen storage disorders,
the median is 17. For an even number of observations, the
median is the average of the two middle values.

Mode: the most frequently occurring value in the
dataset is defined as mode. There can be more than one
mode if multiple values have the same frequency. It can be
used for metric, nominal, or ordinal variables. For example, if
the liver sizes are 15, 16, 17, 17, and 18 cm, themode is 17 cm
because it appears most frequently. The advantages and
disadvantages of measures of central tendency are given
in ►Table 1.

Measures of Variability
Measures of variability describe how much values of varia-
bles in a sample differ from each other. In other words, they
described howmuch the values of the variable deviated from
the mean value (►Fig. 5).15–18

Range: it is the difference between the highest and lowest
values in the dataset. It gives a sense of the spread but is
affected byoutliers. Let us consider the previous example of a
radiologist measuring the mean size of the liver in a sample
of five patients with glycogen storage disorders as 15, 16, 17,
18, and 19 cm. Range is 19–15¼4.

Variance: the average of the squared differences from the
mean. Variance provides a measure of how much the values
in the dataset deviate from the mean.

For a population, the formula is the following:

where N is the size of the population; xi are the values in the
population, μ is the population mean.

For a sample, the formula is the following:

where n is the size of the sample, xi are the values in the
sample, x̄ is the sample mean.

Fig. 4 Pictorial representation of descriptive versus inferential statistics. Sampling is the process of selecting a subset of individuals or data
points from a population to make inferences about the entire population. Inferential statistics are used to make predictions or generalizations
about a population based on sample data, often involving hypothesis testing and confidence intervals. Descriptive statistics are used to
summarize and describe the main features of a dataset, such as measures of central tendency and variability.
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For the examplementioned above (liver sizes of 15, 16, 17,
18, and 19 cm), the variance is calculated as the following:

• Calculate the mean: x̄¼ (15þ16þ17þ18þ19)/5¼17.

• Calculate the squared differences from themean: (xi� x̄)2–
– (15�17)2¼ (�2)2¼4.
– (16�17)2¼ (�1)2¼1.
– (17�17)2¼02¼0.

Fig. 5 Graphical representation of measures of central tendency and measures of dispersion. Measures of central tendency are statistical
metrics (mean, median, mode) that represent the central point or typical value in a dataset, for example, if a radiologist measures the mean size
of the liver in a sample of five patients with glycogen storage disorders as 12, 15, 15, 16, and 14 cm, the mean liver size is (12þ 15þ 15
þ 16þ 14)/5¼ 14.5, the median is 15, and, mode is 15. Measures of dispersion on the other hand are metrics (range, variance, standard
deviation) that quantify the spread or variability of data around the central tendency, for example, in the previous example of mean liver size
measurement, if the values are 10, 13, 14, 16, and 19 cm, range will be 9, variance will be 9.31, and standard deviation will be 3.05.

Table 1 Table demonstrating the advantages and disadvantages of measures of central tendency

Measure of
central tendency

Advantages Disadvantages

Mean • Takes all data points into account, providing
a comprehensive summary

• Sensitive to outliers, which can skew the
result

• Most commonly used and understood • Not suitable for skewed distributions

Median • Not affected by outliers or skewed data • Does not consider all data points, only the
middle value

• Represents the 50th percentile, providing a
central location

• Less informative in symmetric distributions
with no outliers

Mode • Useful for categorical data where we wish to
know the most common category

• May not be unique or may not exist in a
continuous dataset

• Not affected by outliers • Less informative when the distribution is
fairly uniform
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– (18�17)2¼12¼1.
– (19�17)2¼22¼4.

• Sum the squared differences: Sn(xi� x)2¼4þ1þ
0þ1þ4¼10.

• Calculate the variance: s2¼10/(5–1)¼10/4¼2.5.

SD: it is the square root of variance and indicates the
average distance ofdata points from themean. Thus, SD is the
mean deviation (root mean square) of all measured values
from the mean. It is expressed in the same units as the data.

For a population, the formula is the following:

where N is the size of the population, xi are the values in the
population, and μ is the population mean.

For a sample, the formula is the following:

where n is the size of the sample, xi are the values in the
sample, and x̄ is the sample mean.

For the examplementioned above (liver sizes of 15, 16, 17,
18, and 19 cm), SD is calculated as the following:

• Calculate the variance: s2¼2.5.
• Calculate the SD: s¼√s2¼√2.5¼1.58.

Quartile: it divides data into four parts as equal as possi-
ble. For this, the data must be arranged from the smallest to
the largest.

• Quartile (Q1): Middle value between the smallest value
and the median.

• Quartile (Q2):Median of the data, that is, 50% of the values
are smaller and 50% of the values are larger.

• Quartile (Q3): Middle value between the median value
and the largest value.

Interquartile range: to find out the range in which the
middle 50% of all values lie, one can use the scattering
parameter known as interquartile range.

The advantages and disadvantages of measures of vari-
ability are given in ►Table 2.

Inferential Statistics

Inferential statistics allow us to make predictions or infer-
ences about a specific population based on the sample data.
This includes estimating population parameters as well as
testing hypotheses. It therein provides a way to generalize
findings beyond the observed data.19

Inferential statistics are broadly of four types:

• Difference between two groups of variables.
• Correlation between two groups of variables.
• Predicting the outcome variable.
• Relation of variables in time distribution.

In this section, we shall be dealing with the difference
between two groups of variables. The rest will be dealt with
in part 2 of the series.

Estimation
Estimation refers to the use of sample data to estimate
population parameters, such as the mean or proportion.
The accuracy of these estimates can be assessed using
confidence intervals.20

Confidence intervals: range of values within which the
true population parameter is expected to lie with a certain
level of confidence (e.g., 95% confidence interval). A wider
interval indicates greater uncertainty about the parameter
estimate. Let us consider the example of a study measuring
the average radiation dose patients receive during a whole

Table 2 Table demonstrating the advantages and disadvantages of measures of variability

Measure of
central tendency

Advantages Disadvantages

Range • Simple and easy to calculate • Highly sensitive to outliers

• Ignores the distribution of data points within
the range

Variance • Takes into account all data points, providing a
comprehensive measure

• Not in the same units as the original data
(squared units)

• Useful in statistical calculations and inferential
statistics

• Sensitive to outliers

Standard deviation • Provides a clear measure of spread in the same
units as the original data

• Sensitive to outliers

• Widely used and understood in statistical
analysis

• Can be less intuitive to interpret compared to
the range

Interquartile range • Not affected by outliers, as it focuses on the
middle 50% of data

• Ignores the data outside the 1st and 3rd
quartiles

• Useful in skewed distributions • Less informative for distributions that are not
skewed or have outliers
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body 18-FDG positron emission tomography (PET)/CT,
where a 95% confidence interval might be 13 to 15 mSv.
The confidence level of 95% means that if we were to repeat
this study multiple times, approximately 95% of the calcu-
lated confidence intervals from those studies would contain
the true population mean radiation dose.

Hypothesis Testing: Fundamentals
Hypothesis is defined as an assumption that is neither
proved nor disproved. It is a research process that involves
testing assumptions or claims about a population parameter.
Usually hypotheses are formulated starting from a literature
reviewand framing a research question based on this review.
Hypothesis testing of the collected data provides a formal
framework for making decisions based on sample data. The
final target is to either reject or retain this hypothesis.21,22

Null and Alternative Hypothesis
Null hypothesis (H0): it is the default assumption that there
is no statistically significant difference between two or more
groups with respect to a particular characteristic (like no
statistically significant difference between variables or no
effect of an intervention). In a study comparing two imaging
techniques, the null hypothesis might state that there is no
statistically significant difference in the diagnostic accuracy
between these two techniques.

Alternative hypothesis (H1): alternate hypothesis
assumes that there is a difference between two or more
groups. It represents the opposite of the null hypothesis.
Alternative hypothesis might state that there is a difference
in diagnostic accuracy between the two imaging techniques.

Difference and Correlation Hypothesis
Difference hypothesis: it tests whether there is a difference
between two or more groups. Difference hypothesis might
state that there is a difference in diagnostic accuracy be-
tween two imaging techniques.

Correlationhypothesis: it testswhether there isacorrelation
between two or more variables. Correlation hypothesis might
state that there is a correlation between the size of a tumor
measured by ultrasound and its volume measured by MRI.

Directional andunidirectional hypothesis:with anundirec-
tional hypothesis, focus of interest is whether there is a
difference in a value between the groups under consideration.
Ontheotherhand, adirectionalhypothesis focusesonwhether
one group has a higher or lower value than the other.

The fundamental concept of hypothesis testing is that
whether a hypothesis can be accepted or rejected based on a
certain probability of error. The reason for this probability of
error is that each time you take a sample, you get a different
sample,whichmeansthat theresults aredifferentevery time.23

Type I error: it refers to rejecting the null hypothesis when
it is true (false positive). The significance level (α) represents
the probability of making a type I error. Usually, a signifi-
cance level of 5 or 1% is set.

For example, if α is set at 0.05, there is a 5% chance of
incorrectly rejecting the null hypothesis when it is actually
true.

p-Value: it is the probability of obtaining the observed
results if the null hypothesis is true. If the p-value is less than
the significance level, the null hypothesis is to be rejected
(otherwise not). A p-value less than 0.05 is typically consid-
ered statistically significant, indicating that the observed
results are unlikely to have occurred by chance. For example,
if the p-value is 0.03 in a study comparing imaging techni-
ques, it suggests that there is a statistically significant
difference in diagnostic accuracy.

Type II error: it is failing to reject the null hypothesis when
it is false (false negative). The probability of making a type II
error is denoted by β, and power is defined as 1–β. For
example, if a study has low power, there is a higher chance of
failing to detect a true difference between imaging techni-
ques, resulting in a type II error.

It is important to keep in mind that just because an effect
is statistically significant it does not mean that the effect is
relevant. If a very large sample is taken and it has a very small
spread, even aminute differencebetween twogroupsmay be
significant, but it may not be practically relevant.

Sample Size Determination
Determining the appropriate sample size is very crucial for
ensuring the reliability and validity of study results. Too
small a sample size will not give valid results or will not
adequately represent the realities of the population being
analyzed. On the other hand, larger sample sizes give smaller
margins of error and are more representative. In fact, a
sample size that is too large may significantly increase the
cost and time taken to conduct the research.24–28 The factors
that influence sample size include the following:

• Population size: larger populations generally require
larger samples.

• Effect size: smaller effect sizes require larger samples to
detect differences.

• SD: the higher the distribution is, the greater the SD and
the greater the magnitude of deviation.

• Significance level (α): lower significance levels require
larger samples.

• Power (1–β): higher power (typically 0.80) requires larger
samples to reduce the risk of type II errors.

Case Study: Sample Size in Radiological Research
A study aims to evaluate the diagnostic accuracy of a new
MRI sequence in neuroimaging. Researchers need to deter-
mine an appropriate sample size to ensure the study’s
findings are statistically significant and reliable.

• Population size: the population includes all patients
eligible for brain MRI at the hospital.

• Effect size: based on preliminary data, the researchers
estimate a moderate effect size.

• Significance level (α): they choose a significance level of
0.05.

• Power (1–β): they aim for a power of 0.80, meaning they
want an 80% chance of detecting a true difference if one
exists.
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Using sample size calculation formulas, they determine
that a sample size of 200 patients is needed to achieve the
desired power and significance level. This ensures that the
study results will be robust and reliable, providing valuable
insights into the new MRI technique’s diagnostic accuracy.

But which formula should we use to calculate the sample
size (►Fig. 6, ►Table 3)?

Steps in using the formula for sample size calculation:

1. Determine the population size (if known).
2. Determine the confidence interval.
3. Determine the confidence level.
4. Determine the SD (basically representing the population

proportion, which is assumed to be 50%¼0.05).29

5. Convert the confidence level into a Z-score.
6. Put these figures into the sample size formula to get your

sample size.

Necessary sample size¼ (Z-score)2� SD� (1–SD)/(mar-
gin of error)2.

Say you choose towork with a 95% confidence level, an SD
of 0.5, and a confidence interval (margin of error) of�5%.

Necessary sample size¼ {(1.96)2�0.5�0.5/(0.5)2}¼
(3.8416�0.25)/0.0025¼384.16.

Hence, the sample size should be 385.

Hypothesis Testing

Hypothesis testing is a statistical method used to make
decisions about the population based on sample data. It is
used to assess whether a particular viewpoint is likely to be
true.30 It involves several steps (►Fig. 7):

1. Formulate hypotheses: define the null hypothesis (H0)
and alternative hypothesis (H1).

2. Selection of study design and sample size: select ones that
are appropriate to the hypothesis being tested.

3. Select significance level (α): commonly set at 0.05.
4. Collect data: gather sample data relevant to the

hypothesis.
5. Calculate test statistic: use an appropriate test (e.g., t-test,

chi-squared test) to calculate the test statistic for each
outcome variable of interest.

6. Determine p-value: compare the p-value to the signifi-
cance level.

7. Make a decision: reject H0 if p-value<α; otherwise, fail to
reject H0.

Hypothesis testing is just like the concept of “An accused is
presumed to be innocent until proved guilty.”

Confidence level z-score

80% 1.28

85% 1.44

90% 1.65

95% 1.96

99% 2.58

Fig. 6 Formulae for sample size. In Eq. 1, n: required sample size for
an unlimited population; z: Z-score, corresponding to the desired
confidence level (e.g., 1.96 for 95% confidence); p̂: estimated pro-
portion of the population (i.e., the proportion you expect to observe a
certain characteristic in the population); e: margin of error (the
maximum acceptable difference between the true population pa-
rameter and the sample estimate). In Eq. 2, n’: adjusted sample size
for a finite population; n: sample size calculated for an unlimited
population (from the first formula); N: size of the finite population. In
Eq. 3, n: required sample size for a finite population; (N): total
population size; (Z): Z-score corresponding to the desired confidence
level (e.g., 1.96 for 95% confidence); p: estimated proportion of the
population (the probability of the characteristic being studied); 1–p:
complementary proportion (the probability of not having the char-
acteristic being studied); e: margin of error (acceptable level of
precision in the results). In Formula 4, (N): required sample size; σ2:
population variance (or an estimate of the variance of the outcome);
Z1 � α: Z-score corresponding to the desired level of statistical
significance (e.g., 1.96 for a 95% confidence level), which accounts for
type I error (false positives); Z1 � β: Z-score corresponding to the
desired statistical power, representing type II error (false negatives);
typically, 1� β is set at 0.80 or 0.90, and the corresponding Z-score is
looked up (e.g., 0.842 for 80% power); dmin: minimum detectable
difference or effect size, representing the smallest difference that is
practically significant and you wish to detect in your study.
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Common Hypothesis Tests in Radiology
It is broadly divided into two groups: hypothesis tests done
on numerical data and those done on categorical data.
Basically, these tests are used to find the difference between
two groups of variables.

Datasets will have to be treated as paired if they are
related. Thus, if we compare the systolic blood pressure
values of two independent sets of subjects, it is an example
of unpaired data. However, if a condition is included like all
the individuals in one dataset are siblings of the individuals
represented in the other dataset, then corresponding values
in the two datasets may be related in some manner (due to
genetic or familial reasons) and the datasets are no longer
independent.

Parametric data are normally distributed numerical data
that follows the parameters of a normal distribution curve. If
it is a skewed distribution, there is no particular distribution,
or if the distribution is unknown, then it should be consid-
ered as nonparametric data. But practically, how do we
determine whether the numeric data are normally distrib-
uted? One gross method is to look at the measures of central
tendency, mean, andmedian. If themean andmedian are the
same or are very close to one another (as compared with
the total data spread), thenwe can assume that we are dealing
with parametric data. However, the proper method to test the
fit of data to a normal distribution is to use “goodness-of-fit”
tests such as the Kolmogorov–Smirnov test and Shapiro–Wilk

test. The null hypothesis in these tests is that the frequency
distribution of yourdata is normally distributed. If anyof these
tests return a p-value less than 0.05, it implies that the normal
distributionwill have tobe rejected and thedatawouldhave to
be taken as nonparametric.31–34

Statistical tests for normal distribution:

• Kolmogorov–Smirnov test.
• Shapiro–Wilk test.
• Anderson–Darling test.
• D’Agostino–Pearson omnibus test.

The major disadvantage of these tests is that the calculat-
ed p-value is affected by the sample size. Therefore, if the
sample size is very small, the p-value may be much larger
than 0.05. But if the sample size from the same population is
very large, your p-value may be smaller than 0.05.

To overcome this disadvantage, graphical tests for normal
distribution are used (►Fig. 8):

• Histogram data: Compare the histogram curve with the
normal distribution curve.

• Quantile–quantile plot: Compare the theoretical quan-
tiles of normally distributed data with quantiles of the
measured values. If data were perfectly normally distrib-
uted, all the points would be on a straight line. The further
the points deviate from the line, the less normally distrib-
uted the data are.

Table 3 Table showing minimum sample size calculation of different statistical tests and examples with radiology literature
citations

Test type Formula Variables needed Example in radiology Study

Unpaired
t-test

• Significance level (α)
• Zα/2 is the Z-value

corresponding to the
desired significance
level

• Power (1–β)
• Z1–β is the Z-value

corresponding to the
desired power

• Standard deviation (σ)
• Effect size (difference

in means; M1–M2)

Comparison of 320-detector
volumetric and 64-detector
helical computed tomography
(CT) images of the pancreas for
size measurement of various
anatomical structures

Goshima et al48

Paired t-test • Significance level (α)
• Power (1–β)
• Effect size (mean

difference d)
• Standard deviation of

differences (σd)

Comparison of tumor size on
microscopy, CT, and MRI
assessments vs. pathologic
gross specimen analysis of
pancreatic neuroendocrine
tumors

Bian et al49

Chi-squared
test

• Significance level (α)
• Proportion (p)
• Difference in

proportions (D)

Comparison of enhancement
patterns between benign and
malignant solid renal lesions

Millet et al50

ANOVA • Significance level (α)
• Power (1–β)
• Effect size (η2)
• Variance between

groups (σ2)

Population-stratified analysis of
bone mineral density
distribution in cervical and
lumbar vertebrae of Chinese
from quantitative computed
tomography

Zhang et al51
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Fig. 7 Pictorial representation of hypothesis testing process. Steps involved in the hypothesis testing process are the following: (1) Formulation
of a hypothesis (question mark at the top center). This step involves defining a research question or hypothesis. Typically, there are two
hypotheses: (a) null hypothesis (H0)—assumes no effect or no statistically significant difference and (b) alternative hypothesis (H1)—assumes
there is an effect or difference. (2) Selecting a sample (right panel showing population and sample). From the larger population, a sample is
selected. (The sample should be representative of the population to generalize the findings back to the population.) (3) Hypothesis testing
(bottom-right panel showing hypothesis testing). Statistical tests are performed on the sample data to test the hypothesis. (The aim is to
determine whether the data provide enough evidence to reject the null hypothesis in favor of the alternative hypothesis). (4) Significance and p-
value (bottom left with p-value). The result of the hypothesis test is evaluated using the p-value. (If the p-value is less than 0.05 [commonly used
significance level], it suggests that the results are statistically significant, meaning there is sufficient evidence to reject the null hypothesis.) (5)
Conclusion (Arrow back to the top indicating significance). Based on the p-value and test results, conclusions are drawn about the hypothesis,
indicating whether the evidence supports rejecting the null hypothesis.

Fig. 8 Histogram curve and Q-Q plot for graphical representation of normality of distribution. Histogram shows the data’s shape, and the Q-Q
plot compares the data’s quantiles to a theoretical normal distribution to identify deviations from normality.
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Hypothesis Tests Done on Contiguous Data

Parametric Data
Simple t-test: this is a test used todeterminewhether themean
calculated from sample data collected from a single group is
different from the population selected (►Fig. 9).35,36

Let usconsider a studywhere the researcherswant toassess
whether the hippocampal volume on MRI in temporal lobe
epilepsy patients is significantly lower as compared with all
epilepsy patients imaged during a specific time period. The t-
test would then be used to show if the hippocampal volume is
statistically lower in temporal lobe epilepsy patients.

Unpaired sample t-test (for two independent samples): it
compares the means of two independent groups. There is no
relationshipbetween thesubjects inonegroupand those in the
other.36 For example, an unpaired t-test could be used to
compare the average radiation dose received by patients
undergoing neurointervention on a monoplane and biplane
angio-suite, assuming patients are randomlyassigned to one of
the techniques.

Student’s paired t-test (for two dependent samples): it
compares the means of two related groups or conditions.
Each subject or sample is measured twice, resulting in paired
observations.36 A t-test might be used to compare the aver-
age size of hepatocellular carcinoma nodules in patients
treated with a new intra-arterial chemotherapy drug. If
the t-test shows a significant difference in mean sizes, it
suggests that the drug is effective in reducing tumor size.

A tailed t-test refers to either a one-tailed test or a two-
tailed test used to determine the direction of an effect,
while a nontailed t-test typically implies a two-tailed test
that assesses for any significant difference without specify-
ing the direction.

One-tailed t-test: it tests for the possibility of an effect in
one specific direction (e.g., greater than or less than). For

example, when the research hypothesis predicts the direc-
tion of the difference (e.g., drug A increases recovery rate
more than drug B). Basically, it tests if the mean is greater
than a certain value.

Two-tailed t-test: it tests for the possibility of an effect in
both directions (e.g., not equal to). For example, when the
research hypothesis does not predict the direction of the
difference (e.g., drug A has a different recovery rate than
drug B, without specifying higher or lower). Basically, it
tests if the mean is different from a certain value, either
higher or lower.

One factorial ANOVA (for more than two independent
samples): it determines whether there are any statistically
significant differences between the means of three or more
independent groups (or levels) on a continuous independent
variable. It tests the null hypothesis that all group means are
equal37,38: A one-way factorial ANOVA could be used to
compare the average reading timesof radiologists interpreting
images fromthreedifferent typesof imagingmodalities (X-ray,
MRI, and CT scan).

Repeated measures ANOVA (for more than two depen-
dent samples): it determines whether there are any
statistically significant differences between the means of
three or more related groups (or levels) on a continuous
dependent variable measured at multiple time points or
under different conditions. It accounts for the correlation
between measurements taken from the same subject across
different conditions or at different time points.38,39 Repeat-
ed measures ANOVA could be used to assess the effective-
ness of a new contrast agent in enhancing detection of
small cerebral metastatic lesions across multiple time
points during an MRI scan session (comparing the detec-
tion before contrast administration, immediately after
contrast administration and 30minutes postcontrast
administration).

Fig. 9 Approach to select appropriate parametric tests.
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Non-parametric Data

For One Sample
Wilcoxon’s test (Wilcoxon signed-rank test): it compares the
median of a single sample of paired data against a specified
medianvalue (typically zero, assuming nodifference;►Fig. 10

and ►Table 4). It is typically used when the data do not meet
the assumptions required for a parametric test like the t-test,
such as when the data are not normally distributed or when
themeasurement scale is ordinal.40Wilcoxon signed-rank test
could be used to assesswhether a newMRI sequence results in
significantly improved lesion detection as compared with an
established sequence.

Between Two Groups
Mann–Whitney U test (for two independent samples; also
known as Wilcoxon rank sum test): it assesses whether two
independent groups differ significantly in terms of their
medians. It does not assume that the data follow a normal

distribution.41 The Mann–Whitney U test could be used to
compare the interpretation times between two groups of
radiologists interpreting the same set of MRI scans.

Wilcoxon’s test (for two dependent samples): it compares
the medians of two related groups or conditions. It assesses
whether there is a statistically significant differencebetween
paired observations from the same subjects under different
conditions.42 Wilcoxon signed-rank test for two dependent
samples could be used to evaluate the effectiveness of a new
image enhancement AI algorithm comparedwith the current
conventional MRI images.

More than Two Groups
Kruskal–Wallis test (for more than two independent sam-
ples): it determines whether there are statistically signifi-
cant differences between three or more independent groups
in terms of their medians. It is an extension of the Mann–
Whitney U test for more than two groups.43 For example, the
Kruskal–Wallis test could be used to compare the hepatic

Fig. 10 Approach to select appropriate nonparametric tests.

Table 4 Table showing various nonparametric tests used depending on the type of variables

Variable type Test Description

Continuous Mann–Whitney U test Compares differences between two independent groups

Kruskal–Wallis test Extension of the Mann–Whitney U test for three or more groups

Nominal Chi-squared test Assesses whether there is a significant association between two categorical
variables

Fisher’s exact test Used for small sample sizes (<5 in 1 cell) to determine if there are
nonrandom associations between two categorical variables

McNemar’s test Used for paired nominal data to determine if there is a difference in
proportions

Ordinal Wilcoxon’s test Compares two independent groups with ordinal data

Friedman’s test Compares differences between three or more dependent groups (repeated
measures) in ordinal scale

Indian Journal of Radiology and Imaging Vol. 35 Suppl. S1/2025 © 2025. Indian Radiological Association. All rights reserved.

Statistics for Radiologists Kumar et al.S70



lesion size (measured as a continuous variable) among three
different types of imaging modalities (ultrasound, MRI, and
CT scan).

Friedman’s test (for more than two dependent samples):
it determines whether there are statistically significant
differences between three or more dependent groups (re-
peated measures) in terms of their medians. It is analogous
to the Kruskal–Wallis test but is used for within-subject
designs.44 Friedman’s test could be used to compare the
ratings of definition of margins of a cerebral lesion (ordinal
scale) from the same set of radiologists across three differ-
ent MRI sequences.

Hypothesis Tests Done on Categorical Data

• If two groups are to be compared (►Fig. 11)35:
– Chi-squared (χ2) test: it determines whether there is a

significant association between categorical variables. It
is typically usedwhen both variables are categorical and
thedataare frequencies (counts).45For example, the chi-
squared test could be used to assess the association
between the presence of a certain radiological sign
and the presence or absence of a specific pathology.

– Fisher’s exact test: it determines whether there is a
significant association between categorical variables,

especially when sample sizes are small or when
expected cell counts in a contingency table are less
than 5.46 For example, Fisher’s exact test could be used
to compare the diagnostic performance of two imaging
techniques in detecting a rare pathology.

– McNemar’s test: it is a nonparametric test used to
analyze paired nominal data. It is particularly useful
when you have two related samples or repeated meas-
urements on the same subjects, and you want to
determine if there is a significant change in responses
between two conditions or time points.47

• If more than two groups:
– Chi-squared (χ2) test: it determines whether there is a

significant association between two ormore categorical
variables. It is an extension of the chi-squared test for
two groups but applied to contingency tableswithmore
than two rows or columns.45 For example, the chi-
squared test of independence could be used to assess
whether there is an association between the types of
lung disease (categorized into four types: pneumonia,
tuberculosis, asthma, and bronchitis) and smoking sta-
tus (smoker vs. nonsmoker) among a group of patients.

The tests to be done based on the type of data are summa-
rized in ►Tables 4 and 5.

Fig. 11 Approach to select appropriate statistical tests for categorical data.

Table 5 Table showing various parametric and nonparametric tests used depending on the nature of the sample being analyzed

Parametric tests Nonparametric tests

One sample Simple t-test Wilcoxon’s test for 1 sample

Two dependent samples Paired sample t-test Wilcoxon’s test

Two independent samples Unpaired sample t-test Mann–Whitney U test

More than two independent samples One factorial ANOVA Kruskal–Wallis test

More than two dependent samples Repeated measures ANOVA Friedman’s test

Correlation between two variables Pearson’s correlation Spearman’s correlation

Abbreviation: ANOVA, analysis of variance.
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Reporting Statistical Tests
Reporting statistical tests in radiology is important to clearly
and concisely convey the results of analyses performed to
evaluate the significance of findings and robustness of con-
clusions drawn. Key points to consider when reporting
statistical tests are the following:

• Specify the statistical test used: clearly mention which
statistical test was employed (e.g., t-test, ANOVA, chi-
squared test, Mann–Whitney U test). Justification for
the choice of test also has to be provided, including the
nature of the data (parametric vs. nonparametric, nominal
vs. continuous).

• Include relevant parameters: degrees of freedom (if appli-
cable; e.g., for t-tests and ANOVA), effect size (include
measures such as Cohen’s d for t-tests or eta-squared for
ANOVA) to indicate the magnitude of the difference, and
confidence intervals (present confidence intervals formean
differences or proportions to give context to the results).

• Present p-values: clearly state the p-value obtained from
the statistical test (use the conventional threshold for
significance, e.g., p<0.05; if the p-value is above this
threshold, avoid stating it as “not significant”; instead,
indicate the p-value explicitly). For very small p-values, it
is common to report them as p<0.001.

• Interpret results: provide a clear interpretation of what
the statistical results mean in the context of the study.
Clinical significance of the findings should also be dis-
cussed, not just statistical significance.

• Contextualize with clinical implications: discuss how the
statistical findings relate to clinical practice, patient out-
comes, or the diagnostic performance of imaging modali-
ties. Consider including sensitivity, specificity, positive
predictive value, andnegative predictive value if applicable.

• Follow reporting guidelines: adhere to relevant reporting
guidelines (e.g., Standards for Reporting Diagnostic Accu-
racy [STARD] for diagnostic accuracy studies, Consolidat-
ed Standards of Reporting Trials [CONSORT] for
randomized controlled trials) to ensure clarity and trans-
parency in the reporting of statistical analyses.

Here is an example of how statistical results might be
reported in a radiology study.

Let us consider a study to compare the average tumor
volume measured by MRI in patients with type A and B
tumors. A total of 60 patients were included in the analysis,
with 30 patients in the type A group and 30 patients in the
type B group. Themean tumor volume for patients with type
A tumors was 15.2 cm3 (�3.1 cm3), while the mean tumor
volume for patients with type B tumors was 22.8 cm3 (�-
4.5 cm3). An independent sample t-test was performed to
assess whether the difference in mean tumor volumes
between the two groups was statistically significant (after
testing the normality of distribution).

The results indicated a significant difference in tumor
volume between the two groups (t(58)¼–5.46, p<0.001; “t”
signifies the result is derived from a t-test; the number in
brackets is the degree of freedom {N1þN2–2¼30þ30–
2¼58}; –5.46 is the t statistic value, with negative indicating

the mean of the first group is less than that of the second
group; p<0.001 is the p-value that is statistically signifi-
cant). Patients in the type B group exhibited larger tumor
volumes than those in the type A group. The effect size,
calculated using Cohen’s d, was 1.41, indicating a large effect.
Additionally, a 95% confidence interval for the difference in
means was calculated, resulting in an interval of (–9.11 cm3,
–5.25 cm3). This interval suggests that the mean tumor
volume for type B tumors is significantly higher than that
for type A tumors, with a clinically relevant difference. In
conclusion, these findings demonstrate that patients with
type B tumors have significantly larger tumor volumes
compared with those with type A tumors, which may have
implications for treatment planning and prognosis.

Conclusion

To conclude, statistics play a crucial role in radiology, aiding
in accurate data interpretation, improving diagnostic accu-
racy, and advancing research. Proper understanding and
application of statistical principles such as data types, their
distribution, descriptive and inferential statistics, hypothesis
testing, correlation, and sampling are essential for research
in radiology. The foundational knowledge needed to leverage
statistics effectively, ultimately enhancing clinical decision-
making and patient outcomes.
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