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Introduction

The design and synthesis of drug molecules is a pivotal stage in drug development that
traditionally requires significant investment in time and finances. However, the
integration of artificial intelligence (Al) in drug design accelerates the identification
of potential drug candidates, optimizes the drug development process, and contrib-
utes to more informed decision-making. The application of Al in molecular generation
is changing the way researchers explore the chemical space and design novel
compounds. It accelerates the process of drug discovery and materials science,
enabling rapid exploration of the vast chemical landscapes for the identification of
promising candidates for further experimental validation. The application of Al in
predicting reaction products accelerates the synthesis planning process, contributes to
the automation of synthetic chemistry tasks, and supports chemists in making
informed decisions during drug discovery. This paper reviewed the recent advances
in two interrelated areas: the application of Al in molecular generation and synthesis
routes. It will provide insights into the innovative ways in which Al is transforming
traditional approaches in drug development and predict its future progress in these key
fields.

to, target prediction, virtual screening, molecular design,
accelerating the identification of potential drug candidate,

Traditional drug discovery methods are usually associated
with significant challenges including time-consuming pro-
cesses, low hit rates, and a narrow focus on known targets. In
comparison to the traditional drug discovery methods, the
application of artificial intelligence (AI) presents a paradigm
shift." Al is playing a growing role in speeding up and
improving drug discovery and has been widely used in
pharmaceuticals and health care including, but not limited
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and optimizing their pharmacological properties, revolu-
tionizing medical imaging and disease management,’ en-
hancing operational efficiency, and minimizing downtime in
health care services.

Al-driven generative models, such as deep learning-based
approaches, which can be used to design new molecules with
desired properties, have emerged as a new paradigm in
chemical sciences.> This helps to create diverse chemical
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libraries for drug screening. Variational autoencoders (VAEs)
and generative adversarial networks (GANs) were two major
models commonly used in molecular generation. VAEs learn
the latent space of molecular structures and generate novel
molecules by sampling from this latent space. GANs generate
molecular structures by training on a dataset of known
structures. They consist of a generator that creates molecules
and a discriminator that evaluates how well the generated
molecules resemble real ones.

Al is used to design novel drug-like molecules with
desired pharmacological properties. Generative models can
propose chemical structures with optimized properties such
as binding affinity, solubility, and bioavailability.* A system-
atic literature review found that six Al algorithms are com-
monly used for de novo molecule generation, including
evolutionary algorithms, adversarial autoencoders, VAEs,
GANs, long short-term memory recurrent neural networks
(RNN), and gated recurrent units.” Recently, the diffusion
model has been widely used in molecule generations, where
random noises are added into three-dimensional (3D) mole-
cule geometries, and the desired 3D geometries are con-
structed by learning through a reverse process.®

Al models predict the outcome of chemical reactions,
recommend viable reactants, and design chemical synthesis
routes and conditions under which the desired product is
formed,” which helps to generate reaction pathways of
molecular synthesis. By training on databases of known
reactions, these models can learn patterns and relationships
between reactants and products, allowing them to predict
possible outcomes of new reactions. In retrosynthetic analy-
sis, Al suggested synthetic routes for a target molecule by
considering known reactions and associated conditions to
provide viable synthesis pathways for the desired compound.

Many aspects related to generative models for de novo
drug design encompassing the categories based on molecular
representations in silico,® focusing on reinforcement learning
(RL), incorporation of protein structure,'® and comparing
small molecule and protein generation,'" have been docu-
mented. However, the current review highlights the trans-
formative potential of Al across multiple facets of
pharmaceuticals and health care, focusing on two interrelat-
ed approaches: Al-driven molecule generation and synthesis
planning. We also systematically review molecular genera-
tions with one-dimensional (1D; SMILES strings), two-di-
mensional (2D; graph), and 3D ligands generations.

From Drug Screening to Artificial
Intelligence-Assisted Molecular Generation

Machine learning (ML) greatly accelerates the drug discovery
process in terms of virtual screening to predict pharmacoki-
netic properties, toxicity, bioavailability, cellular localiza-
tion, and screening molecular targets and bioactivity. ML
algorithms fall into two fundamental types: supervised
learning and unsupervised learning. Supervised learning
uses regression analysis (e.g., decision trees, random forests,
support vector machines (SVMs), and artificial neural net-
works [AAN]) and classifier methods to train ML models
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specifically for datasets with active and nonactive com-
pounds. Unsupervised algorithms classify compound data-
sets by identifying patterns, with examples such as Hidden
Markov Models, hierarchical clustering, and k-means clus-
tering.'? In drug screening, ANN show great promise by
efficiently filtering candidate drugs from extensive data-
bases, simplifying the processes, and establishing relation-
ships between multiple targets.'> The chemical spaces in the
existing databases are still limited; fortunately, Al helped
molecular design by automatic generation of new drug-like
molecules, offering the promise of exploring the vast chemi-
cal space.

Molecular generation methods can be divided into struc-
ture-based and ligand-based methods. The former uses
high-precision structural features of the target protein
pocket to provide direct guidance for optimizing the inter-
action between the ligand and the target, thereby driving
rational compound design. The latter uses datasets of
known active ligands to design effective molecules with
optimal properties, which can be heavily influenced by
training data.

Ligand-Based Molecular Generation and SMILES
Multiconstrained molecular generation (MCMG) utilizes
knowledge distillation, combined with a conditional trans-
former and a QSAR (quantitative structure-activity relation-
ship)-based RL algorithm, to satisfy multiple constraints and
generate new molecules with desired pharmacological and
physicochemical properties. The process involves precondi-
tioning the generative model without destroying the output
diversity. MCMG consists of three essential submodels: a
prior model, a distilled model based on RNN, and an agent
model. A c-transformer is trained and then distilled into RNN
for subsequent application with RL. The MCMG can effec-
tively balance the convergence speed of the molecule gener-
ation model and partially address the challenge of output
diversity.14

De novo drug design based on the SMILES format of
ligands is a convenient method because all organic com-
pounds can be easily represented by SMILES strings. Thus, it
converts ligand information processing into a sequence-
processing procedure and allows for learning of grammatical
rules of known compounds using various models (e.g.,
transformer, RNN). It is shown that in the case of BRAF
inhibitor design, transformer-encoder-based generative
model trained using ChEMBL's 1.6 million data sets can be
fine-tuned using transfer learning and RL to design a new
BRAF inhibitor with desirable activity.'> SMILES of the
ChEMBL dataset, which can also be combined with protein
sequence information, can be used to generate target-bind-
ing drugs.'®

The SMILES generators are compatible with the de novo
generation of dual-target ligands by using two discrimina-
tors to drive molecules from the overlap of two bioactive
compound distributions.!” Even without specific 3D pocket
inputs, protein-ligand interaction can incorporate the
quantitative strength of common interaction types, such
as van der Waals force, electrostatic interactions, and
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hydrogen bonds. Integrating this energy information into a
VAE framework minimizes SMILES reconstruction error and
generates compounds with the desired interactions.'® In
model training, the ligand 3D grid information of atomic
physicochemical properties can be combined with SMILES
strings."?

The combination of BILSTM (bidirectional long short-term
memory) and Mol-CycleGAN (molecular cycle generative
adversarial network) methods can retain molecular input
information with a cycle architecture.?? SMILES-based gen-
erative models can be generated starting from a selected core
molecule and then using Monte Carlo Tree Search and a RNN
to insert the generated partial SMILES into the initial core
SMILES.?!

REINVENT is a seminal molecular de novo design via deep
RL.227%4 1t is interesting to note that REINVENT uses one-hot
encoded SMILES as input (~Fig. 1) and uses a language-based
generative model RL to maximize a reward provided by an
external scoring function to optimize molecule generation.??
The latest REINVENT 4 extends a number of functions
including de novo design, molecule optimization, library
design, R-group replacement, linker design, and scaffold
hopping.?* These functions are also included in DrugHIVE,
a structure-based drug design hierarchical generative
model.?>

Molecules generated as SMILES strings are usually accom-
panied by invalid molecules. To address this problem, Krenn
proposed self-referencing embedded strings (SELFIES),
where each SELFIES corresponds to a valid molecule, even
for entirely random strings.?® TransGEM is a molecule gen-
eration model based on a transformer with gene expression
data. Zhou et al used the SELFIES to construct a molecule
generation model to incorporate gene expression data.?’ The
study found that high attention scores obtained from the
transformer model were associated with the onset of the
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disease, indicating the potential of these genes as disease
targets.?’

Molecular Generation with Two-Dimensional (Graphs)
Molecular Representations
Graph-based molecular generation extends the description
of molecular structure regarding realistic chemicals.?%2°
Fragment-based conditional molecular generation is an
effective method to generate valid molecules, which can
be accomplished using 1D SMILES?' or frequently graph-
based models.>® Initial seed used for fragment-based
generation can be optimized by activity-swapping methods
that allow for the activation, deactivation, or retention of
activity of molecular seeds.>" To keep more global informa-
tion than random fragment search, scaffold-based deep
generative models are increasingly used, helping in consid-
ering stereochemical information by searching scaffold and
pharmacophore constraints,>273® or by scaffold hopping
to increase diversities.>*3® Graph-based models can used
to generate molecules with increased drug-likeness,
decreased/increased size, and enhanced bioactivity.?” Ad-
ditional studies have been reported to reduce the gap
between graph generative models and target-based
discovery.z'8

Examples of fragment-based generators include FAME,>°
Modof,*° and NIMO.*' FAME treats molecules as sequences of
fragments and can be combined with gene expression pro-
files.3® Modof-pipe improves octanol-water partition coef-
ficient to optimize synthetic accessibility.*° NIMO uses two
tailor-made motif extraction methods to map a molecular
graph into a semantic motif sequence.*! Drug Design based
on graph-fragment molecular representation can perform
multiobjective molecular optimization, including desired
physicochemical properties and binding affinity scores as
targets.*?
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Illustration of one-hot representation derived from the SMILES of 4-(chloromethyl)-1H-imidazole. Reproduced with permission from
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Many fragment-based molecular generation models use
Monte Carlo tree search (MCTS) to find an optimal attached
point for extended fragment growth.*>=46 MCTS combines
the standards of Monte Carlo strategies with tree-primarily
based search techniques that sample and explore only prom-
ising areas of the targeted area. VGAE-MCTS is a molecular
generative model that combines the variational graph
autoencoder and MCTS.*®> Mothra and AlphaDrug also use
MCTS as a conditional molecular generation algorithm.*+4>

Existing graph-based deep generative models can be
easily extended to 3D representations of molecules and
target pharmacophores.*’ 3D-based models are more effi-
cient in exploring chemical space in comparison to 2D
methods.*® The graph information embedded in relative
coordinates also helps to encode the 3D structure of a
molecular, thus satisfying the requirements of translation
and rotation invariance.*’

Structure-Based Molecular Generation and 3D
Information of Protein Binding Sites
Great advancements have been made in de novo drug design
using 3D deep generative models.>® Generated molecular
properties and protein binding affinity often depend on the
environment in which the protein binds to the ligand. Protein
binding pocket can be represented by atomic density grids,”’
electrostatic environments,>? or experimental electron den-
sity directly.>® In the RELATION model, geometric features of
the desired protein-ligand complexes were extracted and
transferred to a latent space for generation.54

An important aim of incorporating protein structure into
molecule generation is to maximize the predicted on-target
binding affinity of generated molecules.'®>> Specific phys-
ics-based features including the binding mechanism be-
tween a receptor and a ligand>® or drug-target
interaction, can be described in model training.°>> For
example, four kinds of atomic interactions including m-m
interaction, cation-m interaction, hydrogen bond interac-
tion, and halogen bond interaction, were tested using learn-
able vector embeddings with a diffusion model.>’ The
ligand-protein interaction can also be converted to finger-
print as constraints.”®

Indeed, diffusion-based generative models have proved to
be a powerful tool.>® PILOT is a diffusion-based de novo
ligand generation that combines pocket conditioning with
large-scale pretraining and property guidance. For a given
pocket of proteins, the generated molecules have higher
binding affinity while maintaining high synthetic accessibil-
ity.59 PMDM is a dual diffusion model consisting of a condi-
tional equivariant diffusion model with both local and global
molecular dynamics.61

ResGen is a SE(3)-equivariant conditional generative
model that generates 3D molecules based on the structure
of the protein pocket.®2 The model employs a parallel multi-
scale modeling strategy and a two-level autoregression
protocol, which is capable of capturing higher-level interac-
tion between protein targets and ligands with better compu-
tational efficiency. The molecules generated by ResGen can
bind tightly to previously unseen protein pockets of thera-
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peutic relevance, have potentially enhanced drug-likeness
and ease of synthesized properties, and are closely similar to
the known active compounds. Notably, ResGen could be used
for conformation generation and analysis.®?

Since the emergence of 3D molecular generation models,
most methods have conditioned on the target structure,
thereby neglecting interaction information related to com-
plex molecule conceptualization and stability. In SurfGen,
inspired by the simple lock-key mode, protein surface chan-
nels are used as protein representation.63 To stimulate
complementarity between small molecules and protein
pockets, topology learning was subsequently performed
via a Geodesic-Graph Neural Network (Geodesic-GNN). Surf-
Gen has the highest performance in docking and scoring
compared with other methods, e.g., GraphBP and Pocket2-
Mol, and can generate molecules with highly similar electron
distribution and shape to the original ligand. SurfGen’s high
sensitivity to pocket structures provides an effective solution
for drug resistance.

Deep learning-based molecular generation methods pro-
duce some biases related to the ligands in the training sets,
which restrict their application to data with limited biologi-
cal activity. To achieve structure-based 3D molecular design,
a new network architecture—Ligand neural network (L-Net),
is used for end-to-end 3D molecular construction.*® L-Net is
based on a graph convolutional neural network and is trained
using molecular structures extracted from the ChEMBL
database, which allows for the generation of drug-like mol-
ecules with high-quality 3D conformations. Combining L-Net
and MCTS (Monte Carlo tree search) algorithm, DeepLig-
Builder is developed to achieve de novo drug design based on
target structures, which allows direct manipulation of 3D
molecular structure while optimizing the topology and 3D
structure of the molecules in the binding pocket.

Molecular design still faces many challenges.* The per-
formances of these models may be unsatisfactory when
generating a large number of molecules with a lack of
diversity.® How to synthesize strange molecules generated
by Al, is an open question, and much work has been devoted
to obtaining synthesizable molecules, e.g., by selecting reac-
tants from commercially available compounds and con-
structing a synthesis route as a tree of reaction template.
ChemistGA combines deep learning with a genetic algorithm
to enhance the accessibility and success of synthesizing
molecules with desired properties.®®

Artificial Intelligence Optimization of the
Reaction Product and Reaction Conditions

Artificial Intelligence Prediction of Reaction Outcome
Accurately predicting the outcome of organic reactions is the
core of organic synthesis in chemical drug development.
Usually, this depends on the chemists’ experience and past
reaction data, which is largely driven by intuition. In contrast
to traditional methods, Al algorithms can be trained with a
large number of reaction precedents in literature covering a
wide range of reaction types. Al can provide possible reaction
products with a high degree of accuracy, and much faster
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Fig. 2 Weisfeiler—-Lehman network model for predicting probability distribution in reaction product mixtures. Reproduced with permission

from Coley et al.%°

than humans after considering various reaction conditions
and physicochemical parameters. The algorithm can be
template-free, e.g., predictions are automatically inferred
from the characteristics of reactant, reagent, and product
present in the data set, i.e., looking for correlations between
the presence and absence of common chemical motifs.%” In
another aspect, Chen and Jung proposed a generalized-
template-based GNN for accurate prediction of organic reac-
tivity.?® The network is based on a generalized reaction
template that catches organic reactivity from the net changes
in electron configuration between reactants and products.
The chemical structure figure provides a natural way to
describe the structure of molecules; nodes correspond to
atoms and edges to bonds. Convolutional neural networks
use graph theory methods to understand chemical reactivity
and predict reaction results through graph editing. In 2019,
Coley and colleagues used graph-convolutional neural net-
works to predict the probability distribution of a mixture of
reaction products.%’ As illustrated in ~Fig. 2, the reactant
molecules, including building blocks, catalysts, bases,
ligands, and solvents, are represented as atomic maps before
encoding the data. Deep learning methods evaluate the
probability of chemical bond recombination, predict the
most likely changes, and generate a set encompassing all
potential products through enumeration. Subsequently, a
new convolutional neural network reallocates the initially
predicted products according to the rules of the chemical
valence state to establish a probability distribution. Accord-
ing to statistical models, the molecule with the highest
probability corresponds to the primary product. The method

Pharmaceutical Fronts Vol. 6 No. 4/2024 © 2024. The Author(s).

incorporates solvent information and descriptions of all
relevant species as molecular maps for atomic mapping,
which significantly improves performance and enhances
model interpretability. In more than 85% of cases, the main
reaction products can be accurately identified, with each
molecule computed in just 100 ms.

In ML, a random forest serves as a classifier consisting of
multiple decision trees whose output categories are deter-
mined by the mode of individual tree outputs. Its versatility
extends to handling classification, regression, and di-
mensionality reduction problems. Notably, random forests
exhibit robustness against outliers and noise, showcasing
superior predictive and classification performance com-
pared with independent decision trees. The main advantages
of random forests include: (1) generating highly accurate
classifiers for various data types; (2) handling a substantial
number of input variables; and (3) assessing the importance
of variables in category determination. Despite these advan-
tages, the application of random forest algorithms in chemi-
cal synthesis still faces historical challenges. The complexity
of implementation, particularly for nonprofessionals, posed
an obstacle. In addition, the “curse of dimensions,” where
data requirement grows exponentially with the number of
dimensions studied, added to the complexity. This challenge
is particularly pronounced in the multidimensional nature of
chemical structure and reactivity, making it difficult to
collect sufficient, complete, and consistent data from data-
bases to implement algorithms.’® Fortunately, the database
established through high-throughput experiments has made
it possible to predict reaction products through random
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forests.”' In 2018, Ahneman and colleagues trained arandom
forest algorithm using high-throughput datasets to predict
which specific palladium catalyst is most tolerant to imidaz-
ole during C-N bond formation.”? These predictions also
help guide the analysis of catalyst inhibition mechanisms.

Ross et al proposed MoLFormer, an efficient transformer
encoder model for predicting a variety of different molecular
properties, which was trained on SMILES sequences of 1.1
billion unlabeled molecules from the PubChem and ZINC
datasets.”? Yoshikawa et al performed CLAIRIFY for automa-
tion of experiments in a chemistry lab using general-purpose
robot manipulators and natural language commands. The
large language models (LLMs) make chemical reactions more
scientific, reasonable, effective, and practical, and provide
stronger support and guarantee for the development and
application of chemistry.’*

In summary, Al has significant advantages over traditional
methods in predicting reaction products, as it can predict the
main products of a chemical reaction in a very short time and
with a high degree of accuracy. The disadvantage, however, is

that when it comes to predicting a reaction, a specific model
needs to be established for that reaction, and the higher the
accuracy, the larger the data required to train the model.

Application of Artificial Intelligence in Predicting
Reaction Conditions
While Al excels at predicting reaction outcomes, it remains a
challenge to experimentally verify computer-generated pre-
dictions, especially to determine the reaction conditions. The
reaction conditions include the chemical environment (cat-
alyst, reagent, solvent) and operational parameters (temper-
ature, pressure, etc.). Different reaction conditions often
produce different results. Thus, employing Al to predict
and optimize these conditions can help improve the preci-
sion and success rate of reaction predictions.”®

Gao et al discussed how ML can be used to predict fitness
bars for organic reactions (~Fig. 3).”® The authors pointed
out major limitations of existing methods, including the
inability to accurately predict complete reaction conditions,
the lack of consideration of chemical background and
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Designing a dataset for substrate-adaptive models
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temperature compatibility, and the lack of large-scale reac-
tion data machine-readable data. To overcome these chal-
lenges, the authors developed a neural network-based model
that trained approximately 10 million reactions on Reaxys to
predict appropriate reaction conditions for organic conver-
sion. The advantages of the model include coverage of a wide
range of organic reactions, the ability to predict factors of
reaction conditions, and the ability to quantify the similarity
of reaction conditions. However, the model has some limi-
tations, such as a limited number of predictions and a limited
ability to predict unusual situations. The potential applica-
tions of the model are also mentioned in the text, including
route screening and prioritization at the path level.

Amar et al developed a hybrid mechanical-machine learn-
ing method for solvent selection in process development.’’
They used a library of 459 solvents and calculated 12
conventional molecular descriptors, two reaction-specific
descriptors, and additional descriptors based on the screen-
ing charge density. The method combines physically mean-
ingful solvent descriptors with a Gauss process-based
algorithm to find solvents that are more favorable for asym-
metric hydrogenation, and better than intuitively selected
solvents in terms of conversion and enantiomer. In addition,
automated ML workflow is successful for solvent selection.
However, this approach requires a large amount of data
support and needs to be complemented by proxy models
with statistical predictive capabilities. Continuing to develop
bridges between chemical information and data-intensive
ML methods makes a lot of sense and promises to save time
and resources for process chemists.

Rinehart et al developed an ML tool to predict substrate-
adaptative conditions for palladium-catalyzed C-N coupling
reactions.’® The neural network model actively learns a wide
range of C-N coupling reactions by designing an experimen-
tal data set. A challenge model using a neural network model
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was used in experimental validation and successfully isolat-
ed 10 products from a series of samples in over 85% yields. In
addition, the prediction ability of the model is gradually
improving with the continuous accumulation of data
(=~Fig. 4).

Gong et al introduced DeepReac+, a computational
framework designed for predicting chemical reactions and
determining optimal reaction conditions (~Fig. 5).”° Deep-
Reac+ includes the DeepReac model and sampling strategy
and offers a robust solution. The DeepReac Model is a graph-
neural network-based model that specializes in chemical
reaction representation learning. It takes 2D molecular
structures as inputs, adapting seamlessly to a variety of
prediction tasks, including yield and stereoselectivity. Graph
Attention Network, serving as its core, facilitates modeling
interactions among reaction components. The sampling
strategy is a key element of the DeepReac+ framework,
employing two strategies: diversity sampling and adversary
sampling. These strategies select informative experimental
data during model training to improve model performance
and cost efficiency. DeepReac+ efficiently predicts chemical
reaction outcomes and identifies optimal reaction condi-
tions by combining the DeepReac model with an active
learning strategy. This integration positions DeepReac+ as
a valuable Al tool in chemical synthesis.

Shields et al presented a Bayesian reaction optimization
framework along with an open-source software tool.2° This
tool empowers chemists to seamlessly incorporate state-of-
the-art optimization algorithms into their everyday experi-
ments, facilitating an enhanced and user-friendly approach to
reaction optimization. A large baseline data set of palladium-
catalyzed direct arylation reactions is collected, and Bayes
optimization and human decision-making in reaction optimi-
zation are systematically investigated. Bayesian optimization
is applied to two real optimization works (Mitsunobu reaction



Artificial Intelligence in Drug Molecular Generation and Synthesis

Graph structures

Molecule
GAT

(G2000d)

Category
information
DeepReac
Model

Reaction
GAT

| CTTeTereo)) ¢' ; (Essee9)

" = @
2 P
[N

(. DeepReac+

Active
Learning
Loop

Task-related reaction representations

Ma et al.

Sampling
Strategy

Diversity-based strategy

(000000000000) @&

. v

Fig. 5 Schematic workflow of the DeepReac+ framework. Reproduced with permission from Gong et a

and defluorination reaction). Its main advantages are higher
average optimization efficiency and better consistency,
highlighting the potential of Bayesian optimization and allow-
ing us to make better-informed, data-driven decisions about
which experiments to run, ultimately leading to more efficient
synthesis of functional chemicals.

Burger et al reported a method for autonomous experi-
mental search using mobile robots.2’ A mobile robot took
center stage in the quest for enhanced photocatalysts for
water-based hydrogen production. Over 8 days, the mobile
robot executed a remarkable 688 experiments, using a batch
Bayesian search theory algorithm within a 10-variable ex-
perimental space. This innovative approach greatly acceler-
ated the exploration of improved photocatalysts, showcasing
the efficiency and potential of robotic systems in accelerating
experimentation processes. The results showed that this
autonomous search identified the photocatalyst mixture
that was six times more active than the original formulation,
selected the beneficial component, and eliminated the nega-
tive component. Autonomous experiment search using mo-
bile robots is flexible, efficient, and safe, but the Bayesian
optimization algorithm is still somewhat blind and requires a
large amount of initial investment. Therefore, it is still a good
hope that robots will replace humans in experimental
operations.

Currently, the prediction of reaction conditions (RCs)
using a DL framework is hindered by several factors, includ-
ing (1) the lack of a standardized dataset for benchmarking,
(2) the lack of a general prediction model with powerful

>
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representation, and (3) the lack of interpretability. To address
these issues, we first created two standardized RC datasets
covering a broad range of reaction classes and then proposed
a powerful and interpretable Transformer-based RC predic-
tor named Parrot.

There are several factors affecting the prediction of reac-
tion condition,®? including the lack of a general prediction
model with powerful representation and the lack of a stan-
dardized dataset for benchmarking. The lack of interpretabil-
ity is common for most ML models. Based on a self-attention
mechanism, the Transformer may boost prediction accuracy
and provide interpretability, as demonstrated by interpret-
able Transformer-based reaction condition predictor Par-
rot®2 and Molecular Transformer.®> Meanwhile, Relational
Graph Convolutional Networks may also provide accurate
multilabel classification solutions for prediction of reaction
conditions.3*

Application of Artificial Intelligence in Reaction Yield
Prediction

With the growing abundance of molecular property datasets
and reaction datasets, coupled with advancements in com-
puting power, the application of ML technology in reactivity
prediction has garnered significant attention.®>-8® Notably,
Reymond and colleagues®® showcased the extension of Nat-
ural Language Processing architectures, particularly the
Transformer-based bidirectional encoder representations
from transformers (BERT), for predicting reaction yields
based on SMILES representations of reactants. Their work
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involved fine-tuning a BERT encoder with a regression layer,
pretrained using a masked language to model the loss of
chemical reactions, resulting in high-quality yield predic-
tions. The model was trained on two distinct datasets: one
from high-throughput experimentation (HTE) and another
from patent datasets. This trained model demonstrated its
capabilities to predict a variety of reactions, including Buch-
wald-Hartwig and Suzuki-Miyaura, including data from
the U.S. Patent and Trademark Office (USPTO) dataset. It is
worth noting that the HTE and USPTO datasets differ signifi-
cantly in content and quality, with the former covering a
specific chemical reaction region and providing high-quality
data, while the latter spans a broader reaction space with
noisy and sparse data.2® Additional studies have highlighted
the limitations of this dataset’s suitability for reaction yield
prediction. Saebi et al found that using data from electronic
laboratory notebooks (ELNs) to train attributed GNNs does
not lead to a predictive model, contrary to the initial expec-
tation that the ELNs could provide less biased, large
datasets.?”

Yield prediction methods vary using techniques such as
one-hot encoding of reactants, tandem molecular finger-
prints, or computational chemical descriptors. Probst et al
proposed a differential reaction fingerprint (DRFP) for
reaction searching and categorization as well as yield
prediction.88 The DRFP algorithm takes a reaction SMILES
as an input and creates a binary fingerprint based on the
symmetric difference of two sets containing circular n-
grams.

Glorius’group introduced a structure-based ML platform
with diverse applications in organic chemistry,® to achieve
generality in molecular representation, they developed an
input based on a multifingerprint feature. This approach
applies to a variety of problem sets. Initially, it was able to
accurately predict the molecular properties of diverse mo-
lecular arrays. Then, the platform successfully predicted
reaction outcomes, including stereoselectivity and yield,
for previously evaluated experimental datasets using prob-
lem-specific descriptor models. In a final application, the
platform showed effective correlations when applied to the
systematic analysis of a high-throughput dataset, showcas-
ing its practical utility in structure-based modalities.

Reymond’s group®® used a natural language processing
architecture to predict response properties based on a text-
based response representation. Using an encoder-transform-
er model paired with a regression layer, they achieved
excellent predictive performance on two high-throughput
experimental reaction sets. However, when analyzing yields
from the USPTO dataset, they observed differences in distri-
bution based on mass scale. To obtain a high-quality generic
reaction yield dataset, Yin et al curated a generic reaction
yield dataset containing information on 12 reaction catego-
ries and reaction conditions.’’ Subsequently, using BERT-
based reaction yield predictor, they found that contrastive
learning based on reaction conditions enhances the sensitiv-
ity of the model to reaction conditions.

ML models using quantum chemical calculations were
trained to predict the transition state and yield in copper-
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catalyzed P-H insertion reactions.’? The transition state
was identified by analyzing 120 experimental data points
using density functional theory. Subsequently, an ML
algorithm was applied to analyze the 16 descriptors de-
rived from the transition states to predict product yields.
Among the algorithms investigated, SVM had the highest
prediction accuracy of 97%, with a correlation of over 80%
in leave-one-out cross-validation. Sensitivity analysis was
performed for each descriptor and the reaction mecha-
nism was thoroughly examined to enhance the under-
standing of transition state characteristics. Matsubara’s
group used ML methods to build a multiple linear regres-
sion model based on batch reaction data of 29 substrates to
predict the Wittig methylene reaction rate diagram of any
aldehyde and diiodomethane.®> The predicted profile
allows the simultaneous determination of the highest
achievable yield and the shortest reaction time. This can
be interpreted as the residence time required to reach the
maximum yield of the methylation of diiodomethane in a
flow microreactor.

Conclusion

Al offers new opportunities for the design of innovative
chemical drugs, and it has changed the traditional research
paradigm of medicinal chemistry by designing and gener-
ating small molecules in a more efficient, smarter, and
more precise way, and increasing their potential to be-
come drugs.

For a given chemical reaction, Al has been developed to
predict reaction products, and reaction yields, and to
optimize reaction conditions. However, accurate predic-
tion of reaction products is often dependent on the
amount of data required to train the model. For the
optimization of reaction conditions, there are difficulties
such as the inability to accurately predict complete reac-
tion conditions, the lack of consideration of chemical
background and temperature compatibility, and the lack
of machine-readable data for large-scale reaction data. The
neural network-based model developed by the research-
ers, as well as the use of mobile robots for autonomous
experimental searches, opens up additional possibilities
for more comprehensively determining optimal chemical
reaction conditions. Feature learning methods such as
language model (LM) and GNN show good promise in
chemical reaction yield prediction. On this basis, research-
ers have proposed structure-based ML platforms or means
incorporating quantum chemical computing to accurately
predict the highest yields and shortest reaction times of
chemical reactions.

In small-molecule drug design, Al techniques are utilized
to generate molecules with potential biological activity.
Structure- and ligand-based molecular generation models
offer the possibility of efficient molecular discovery. How-
ever, many challenges remain regarding the structural
diversity of the generated molecules and the ability of
current molecular generation models to generate large
molecules. In terms of drug screening, Al realizes the
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validation of drug targets and the optimal design of drug
structures faster than conventional drug screening techni-
ques based on traditional multidisciplinary. Different algo-
rithms, as well as predictive models, have been used to
evaluate the physicochemical properties as well as in vivo
activity and toxicity of small molecule drugs. These tech-
nological innovations can significantly reduce the time
required for new drug discovery.
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