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Abstract Objective The aim of this study was to explore an innovative approach for developing
deep learning (DL) algorithm for renal cell carcinoma (RCC) detection and subtyping on
computed tomography (CT): clear cell RCC (ccRCC) versus non-ccRCC using two-
dimensional (2D) neural network architecture and feature consistency modules.
Materials and Methods This retrospective study included baseline CTscans from 196
histopathologically proven RCC patients: 143 ccRCCs and 53 non-ccRCCs. Manual
tumor annotations were performed on axial slices of corticomedullary phase images,
serving as ground truth. After image preprocessing, the dataset was divided into
training, validation, and testing subsets. The study testedmultiple 2D DL architectures,
with the FocalNet-DINO demonstrating highest effectiveness in detecting and classify-
ing RCC. The study further incorporated spatial and class consistency modules to
enhance prediction accuracy. Models’ performance was evaluated using free-response
receiver operating characteristic curves, recall rates, specificity, accuracy, F1 scores,
and area under the curve (AUC) scores.
Results The FocalNet-DINO architecture achieved the highest recall rate of 0.823 at
0.025 false positives per image (FPI) for RCC detection. The integration of spatial and
class consistency modules into the architecture led to 0.2% increase in recall rate at
0.025 FPI, along with improvements of 0.1% in both accuracy and AUC scores for RCC
classification. These enhancements allowed detection of cancer in an additional 21
slices and reduced false positives in 126 slices.
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Introduction

Renal cell carcinoma (RCC) represents a significant portion of
cancer in adults, manifesting in a variety of histological
patterns.1 Of these, the most prevalent and aggressive kind
is clear cell RCC (ccRCC).2 It is of paramount importance to
distinguish among RCC subtypes and determine their grades
for patient prognosis and to customize treatment employing
the latest therapeutic options, including inhibitors of tyro-
sinekinase andvascular endothelial growth factor.3–5 Even in
nonmetastatic RCC cases where surgery is the standard
irrespective of the type of RCC, preoperative subtype classi-
fication still holds clinical relevance as it can guide surgical
planning, perioperative care, and risk stratification, especial-
ly for aggressive subtypes like ccRCC. However, current
diagnostic methods, including renal mass biopsies, are inva-
sive and can lead to erratic results.6,7 The use of contrast
enhancement patterns in multiphasic computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) for RCC
characterization is also vulnerable to subjectivity and over-
lapping imaging results.8,9 Consequently, there is a critical
demand for dependable, noninvasive imaging biomarkers
that can accurately classify and grade RCC, thereby improving
diagnostic precision and patient management.

Recent advances in deep neural networks (DNN) offer
promising avenues for enhancing RCC detection and classifi-
cation through cross-sectional imaging.10–13 Previous re-
search has shown that DNN models can accurately detect
and subtype RCC, highlighting their potential role in complex
medical image processing and patient prognostica-
tion.12,14–16 However, the landscape of RCC characterization
and its management implications continues to evolve, ne-
cessitating further research. Challenges such as interobserv-
er variability in radiological interpretations and the
overlapping image features of RCC subtypes call for more
refined and reliable diagnostic tools with feasibility for easy
integration into radiological practice.

With this background, our study aimed to investigate a
novel method of training and constructing a deep learning
(DL) algorithm for RCC detection and subtyping (ccRCC vs.
non-ccRCC) utilizing two-dimensional (2D) neural network
architectures and feature consistency modules.

Materials and Methods

CT Dataset Preparation
The Institute Ethics Committee approved this retrospective
study. We reviewed the pathology report database of our
tertiary care hospital for patients with histopathologically
provenRCC innephrectomyspecimens, between January2016

andNovember 2021.Using thesepathology reports as thegold
standard, RCC patients were categorized into ccRCC and non-
ccRCC (including papillary and chromophobe RCCs). Abdomi-
nal CT scans corresponding to these patients were obtained
from the hospital’s Picture Archiving and Communication
System (PACS) using their unique hospital identification num-
bers. Patientswithout a preoperativebaseline scan in the PACS
wereexcluded fromthe study. Thus, 196RCCpatientswhohad
preoperative abdominal CT at our facility and thereafter
surgery were included in the analysis. In this cohort, 143
were ccRCCs and 53 were non-ccRCCs (42 papillary RCCs
and 11 chromophobe RCCs). The authors confirm the avail-
ability of, and access to, all original data reported in this study

Computed Tomography Protocol
A dual-source dual-energy 2�128 section multidetector CT
scanner (Somatom Definition Flash, Siemens Healthineers,
Germany) was used for multiphase CT imaging. A noncon-
trast CT (NCCT) scan is thefirst step in the standardized renal
mass protocol used in our department. Corticomedullary
(CM) and nephrographic phase images are then obtained at
25 to 30 and 60 to 70 seconds, respectively, following intra-
venous injection of 100mL of iodinated contrast (Omnipa-
que 350, GE Healthcare) through a peripheral line at 3 to
5mL/s. Delayed excretory phase images are obtained after 4
to 5minutes in patients with suspicion of renal collecting
system involvement. The retrieved CT scans were made
anonymous by removing the Digital Imaging and Commu-
nications in Medicine (DICOM) metadata and reassigning
them with a new unique ID number for the study. The CM
phase images were selected for model training and testing
due to their high sensitivity for RCC detection and character-
ization per established CT protocols, with other contrast
phases less consistently available due to protocol variability
in the retrospective data.

Manual Tumor Annotation
The CM phase images from the retrieved CT abdomen scans
were converted into axial slices with a uniform resolution of
0.7 frames/mm and saved as individual Joint Photographic
Experts Group (JPEG) files for each patient. One radiologist
(with 9 years of body imaging experience) manually anno-
tated the tumors on these images. Each axial slice was
individually examined by the radiologist for the presence
of renal tumor. Using the freely accessible open-source
“LabelMe” software, manual tumor marking was done by
the radiologist using rectangular bounding box placement.
The manual labels were subsequently reviewed for correct-
ness by another radiologist (with 20 years of experience in

Conclusion This study demonstrates high performance for RCC detection and
classification using DL algorithm leveraging 2D neural networks and spatial and class
consistency modules, to offer a novel, computationally simpler, and accurate DL
approach to RCC characterization.
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genitourinary imaging). This manual bounding box place-
ment by the radiologist was used as the ground truth for RCC
detection during the training and testing of the networks.

Image Preprocessing and Data Stratification
The collected image dataset underwent preprocessing to
ensure consistency and quality. This included standardizing
image dimensions by rescaling it to 224�224, normalizing
pixel intensities between 0 and 1 by employing the mean-
max normalization algorithm, and applying standardized
augmentation techniques such as random rotations, flips,
translations, changes in brightness, and contrast for en-
hanced diversity. Following preprocessing, the data were
partitioned into three cohorts: training, validation, and
testing. The training cohort, comprising 80% of the data,
was utilized to train the model. A separate validation cohort,
constituting 10% of the data, facilitated fine-tuning the
model parameters and guarded against overfitting. The
remaining 10% formed the testing cohort, reserved for
assessing the model’s performance on unseen data. Care
was taken to maintain a balanced distribution of tumor
subtypes and to ensure that the data pertaining to one
patient was kept in a single cohort to avoid label leaking.
Thus, 156 scans (115 ccRCCs and 41 non-ccRCCs) were used
for training, while validation and testing included 20 scans
each (14 ccRCCs and 6 non-ccRCCs per cohort).

Working of Deep Neural Network Architecture
In this study,we approacheddetecting and classifying RCCon
CT as an image-based object detection problem. We experi-
mented with several 2D deep neural network–based object

detection methods for this method. The FocalNet-DINO
design was found to be the most efficient of these. ►Fig. 1

depicts the architecture of the FocalNet-DINO-based object
detection system. This intricate architecture involved divid-
ing the input images into smaller patches, which were then
processed through a sophisticated ResNet-based backbone to
generate multiscale feature maps. Each feature map was
refined using a series of encoder blocks equipped with
focal-modulation-based self-attentionmechanisms. This en-
abled efficient and detailed interaction between the features
of each patch, resulting in improved refinement. The en-
hanced multiscale feature map generated by the encoder
layer was subjected to a query selection framework that
employed a gated aggregation mechanism. This framework
was useful in creating prospective tumor locations, which
were then refined during the decoder step. The decoder
incorporated a deformable cross-attention module, a key
component that focused on the feature maps corresponding
to every query, facilitating accurate detection and classifica-
tion of the tumor regions. The classification for each axial
section of the CT scan was determined based on the class
label of the most confident bounding box in that slice.

Incorporating Spatial and Class Consistency Modules
in the DL Algorithm
A novel component of our study was the 2D network’s
independent inference on each axial section of the CT scan.
To refine the predictions, we took advantage of the intrinsic
spatial consistency across axial sections. To ensure spatial
coherence, we altered the confidence levels of our predic-
tions based on the spatial overlaps of three subsequent

Fig. 1 Architecture of the FocalNet-DINO-based object detection algorithm. CNN, convolutional neural network.
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frames. Furthermore, the mode of class labels across these
frames was used to calculate each prediction’s class label.
Finally, the axial slices with annotated bounding boxes and
classification labels were combined into DICOM files for the
final result. A schematic of the suggested RCC detection and
classification model’s pipeline is presented in ►Fig. 2.

Testing of the Networks and Data Analysis
We used the free-response receiver operating characteristic
(FROC) curve and recall rates at varying false-positive toler-
ances to evaluate the performance of various network archi-
tectures for RCC detection. The FROC curve offers a detailed
graphical representation of sensitivity/recall values against
false-positives per image (FPI). Our criterion for a true
positive prediction was based on the positioning of the
predicted bounding box’s center within the ground truth
bounding box, aligning with the medico-vision community
standards. For the classification task, we assessed the perfor-
mance of the DL models using key metrics such as accuracy,
F1 scores, precision, recall, and area under the curve (AUC)
scores.

Results

Patient Demography and Tumor Characteristics
The mean age of the 143 patients who had ccRCCs was 67.5
years (range: 51–72 years), and the average size of their tumor
was 6.5 cm (standard deviation:�2.4 cm). Therewere 81men
and 62 women in the group. The average age of patient with
non-ccRCCs (n¼53)was 64.7 years (range: 48–70 years), with

a male-to-female ratio of 31:22 and an average tumor size of
6.4 cm (standard deviation:�2.3 cm).

Renal Cell Carcinoma Detection
We compared the performance of the proposed algorithm
against the ground truth for its detection performance. A
predicted bounding box was considered to be valid if the
prediction confidence was greater than 0.5. We measured
the recall rate of the proposed algorithm against various
tolerance levels of false positives per image (FPI) and the
results of the same can be observed in ►Table 1. Similarly,
the corresponding FROC curves can be found in ►Fig. 3.
The FocalNet-DINO architecture achieved a recall rate of
0.823 with 0.025 FPI, outperforming the next best-per-
forming network, DN-DEF, by 0.9%. The addition of spatial
and class consistency modules to our proposed design
improved the performance even more, with a 0.2% gain
in recall rate at 0.025 FPI. These results, particularly the
recall rate of 0.825 at 0.025 FPI, provide strong evidence of
the model’s high accuracy in RCC detection, underscored
by the increased sensitivity achieved through spatial and
class consistency modules. ►Fig. 4 shows visualizations of
the ground truth labels and predictions by various net-
works for different patients. The proposed feature consis-
tency strategies enabled the detection of cancer in an extra
21 slices of the test dataset, increasing the model’s sensi-
tivity. In addition, the spatial and class consistency module
demonstrated its effectiveness in improving prediction
accuracy by reducing the number of false positives in
126 slices.

Fig. 2 Overall pipeline of the proposed renal cell carcinoma (RCC) detection and classification model. CT, computed tomography.
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Renal Cell Carcinoma Classification
The RCC class (ccRCC vs. non-ccRCC) of a CT slice was
determined according to the label of the valid bounding

box with the highest confidence. A bounding box was con-
sidered valid if its confidence was above a threshold of 0.5. If
no valid bounding boxes were detected in a slice, that slice
was considered normal. The results of the classification
approach (sensitivity, specificity, F1 score, accuracy, and
AUC score) are included in ►Table 1. The precision recall
curve (PR curve) and the AUC curve are shown in ►Figs. 5

and 6, respectively. The FocalNet-DINO demonstrated an
accuracy of 0.950, an F1 score of 0.893, and an AUC score
of 0.985 for classification of RCC (ccRCC vs. non-ccRCC). The
addition of the spatial and class consistency modules led to
an improvement of 0.1% in the AUC score.

Discussion

In our study, we showed high accuracy of computationally
efficient 2D neural networks for detection and classification
of RCC on CT images by approaching it as an image-based
object detection task (best performance for FocalNet-DINO)
showing further improvement of the performance by incor-
poration of spatial and class consistency modules in our
proposed algorithm.

Fig. 3 Free-response receiver operating characteristic (FROC) curve
comparing various state-of-the-art object detection architectures for
renal cell carcinoma detection with the proposed model.

Table 1 Comparison of performance of various deep neural network–based object detection architectures for RCC detection and
classification

Model name Venue Detection results Classification results

R@0.025 R@0.05 R@0.1 R@0.3 R@0.5 R@1 R@5 Acc F1
score

AUC
score

DAB-DETR ICLR’22 0.763 0.845 0.884 0.915 0.927 0.937 0.969 0.942 0.874 0.976

DAB DEF. ICLR’22 0.786 0.849 0.878 0.927 0.942 0.956 0.977 0.942 0.875 0.977

DN-DETR CVPR’22 0.81 0.867 0.906 0.93 0.935 0.942 0.968 0.945 0.883 0.981

DN DEF. CVPR’22 0.815 0.867 0.898 0.933 0.944 0.964 0.990 0.950 0.892 0.98

FocalNet-DINO NeurIPS’22 0.823 0.893 0.929 0.956 0.964 0.979 0.992 0.950 0.893 0.985

Proposed 0.825 0.895 0.930 0.958 0.964 0.979 0.992 0.951 0.893 0.986

Abbreviations: AUC, area under the curve; R, recall; RCC, renal cell carcinoma.

Fig. 4 Visualizations of the ground truth (GT) bounding boxes (blue) and predictions (green) for various tested algorithms for different patients.
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We used 2D neural networks for RCC diagnosis on CT
images. While three-dimensional (3D) networks have the
potential to offer a more comprehensive analysis by consid-
ering the volumetric context and spatial relationships within
the entire tumor, these networks treat the entire CT scan of a
patient as a single training example, resulting in requirement
of a substantially large dataset for training.17,18 In scenarios
with limited data, as observed in our work, 3D convolutional
neural networks (CNNs) are prone to overfitting, rendering
them practically unusable.19 In contrast, 2D networks use
individual slices of the CT scan as training samples. This
approach allows for training with a limited number of
patient data. Additionally, due to the considerable diversity
among CT slices, 2D CNNs exhibit a reduced likelihood of
overfitting.19 Furthermore, 2D CNNs are more computation-
ally efficient, resulting in quicker processing times. This
efficiency is particularly pertinent in environments with
limited computational resources. Notably, 2D neural net-

works demonstrate an enhanced ability to handle data
variability, require less data for training and validation,
and offer faster inference times compared to their 3D
counterparts.18

Since the proposed 2D neural network analyses each slice
of the CT scan independently, there is a high risk of spurious
misclassification, false-positive box prediction, or deviated
box prediction. This error resembles the salt and pepper
noise of the images.20 To mitigate the above-mentioned
effects, we incorporated spatial consistency and class con-
sistency modules. We analyze the spatial overlap of the
predicted bounding boxes across the slices and replace the
bounding box of any slice with the median of the bounding
boxes in its N-5 neighborhood (5 previous and next frames).
This removes the false positives and adjusts the deviated
bounding boxes. Similarly, we incorporate the class consis-
tency module to replace the class of the detected bounding
box as a median of the classes predicted in the N-5 neigh-
borhood. This reduces the risk of misclassification and
establishes consistency in the prediction throughout the
patient’s CT scan. Incorporating these modules ensures the
model is practically usable in the radiology workflow.

Previous research has investigated the use of DL models
for image analysis of renal tumors, including tumor detec-
tion, segmentation, and subclassification, with promising
results.21–24 However, the majority of prior investigations
have focused on distinguishing between benign and malig-
nant renal tumors and cysts.25 Moreover, in these previous
studies, the DL methods for RCC classification required
manual tumor localization using tumor regions marked by
a radiologist.24,26,27 To the best of our knowledge, two
studies report the end-to-end use of DL for both RCC detec-
tion and its subtyping into histopathological variants.11,13

Both these studies used 3D CNN–based models and found
high accuracy of these models for RCC classification, compa-
rable to the radiologists. Our study further contributes to the
literature by demonstrating similar high performance for
RCC detection and classification by an ingenious approach
using 2D neural networks and feature consistency modules.
Furthermore, this study adds to the expanding body of
evidence supporting the use of DNN in medical imaging,
notably for accurately and efficiently classifying complicated
malignancies such as RCC. Such differentiation of the more
aggressive ccRCC from other non-ccRCC tumor subtypes has
the potential to improve prognosis and enable personalized
treatments with targeted therapies like tyrosine kinase and
vascular endothelial growth factor inhibitors. Given the
limitations of the current diagnostic methods in reliably
achieving this differentiation, the use of DL models offers a
promising noninvasive alternative for accurate RCC subtyp-
ing and grading, potentially improving patient outcomes and
treatment precision.

Our study had certain limitations. Our study relied on
postoperative pathology reports, which limited our analysis
to nonmetastatic cases, potentially affecting the generaliz-
ability of our findings. Metastatic RCCs, especially non-ccRCC
subtypes, can exhibit heterogeneity, necrosis, and other
features distinct from nonmetastatic cases, potentially

Fig. 6 Area under the curve (AUC) comparing classification perfor-
mance of various state-of-the-art object detection architectures with
the proposed model.

Fig. 5 Precision recall (PR) curve comparing performance of various
state-of-the-art object detection architectures for renal cell carcino-
ma classification with the proposed model.

Indian Journal of Radiology and Imaging © 2024. Indian Radiological Association. All rights reserved.

Predicting Renal Cell Carcinoma Subtypes and Grading Using 2D Neural Networks Gupta et al.



affecting the DL features extracted. In the cases where the
model failed to detect or classify RCC accurately, contributing
factors likely included low tumor-to-tissue contrast, hetero-
geneous or necrotic tumor regions, and reduced spatial
coherence in certain slices. A comprehensive failure analysis
could help identify specific patterns inmisclassifications and
inform future model improvements. Due to the small indi-
vidual sample sizes for chromophobe and papillary RCC
subgroups, a meaningful analysis of subgroup differences
within the non-ccRCC class could not be performed. The
long-term impact of integrating our method into clinical
practice remains to be seen. Future research should look into
the practical usefulness of this method in clinical settings.
Integrating our method with other diagnostic modalities,
such as MRI or ultrasound, could improve the accuracy and
usefulness of RCC classification.

Conclusion

In conclusion, in this study, we leverage 2D neural networks
and spatial and class consistency modules to offer a novel,
computationally simpler and accurate DL approach to RCC
detection and classification on cross-sectional imaging.

Funding
None.

Conflict of Interest
None declared.

References
1 Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The

2016 WHO classification of tumours of the urinary system and
male genital organs-part A: renal, penile, and testicular tumours.
Eur Urol 2016;70(01):93–105

2 Capitanio U, Cloutier V, Zini L, et al. A critical assessment of the
prognostic value of clear cell, papillary and chromophobe histo-
logical subtypes in renal cell carcinoma: a population-based
study. BJU Int 2009;103(11):1496–1500

3 Patard JJ, Leray E, Rioux-Leclercq N, et al. Prognostic value of
histologic subtypes in renal cell carcinoma: a multicenter experi-
ence. J Clin Oncol 2005;23(12):2763–2771

4 Lee CH, Motzer R. Combination VEGFR/immune checkpoint in-
hibitor therapy: a promising new treatment for renal cell carci-
noma. Br J Cancer 2018;119(08):911–912

5 Atkins MB, Tannir NM. Current and emerging therapies for first-
line treatment ofmetastatic clear cell renal cell carcinoma. Cancer
Treat Rev 2018;70:127–137

6 Abel EJ, Carrasco A, Culp SH, et al. Limitations of preoperative
biopsy in patients with metastatic renal cell carcinoma: compari-
son to surgical pathology in 405 cases. BJU Int 2012;110(11):
1742–1746

7 Abel EJ, Culp SH, Matin SF, et al. Percutaneous biopsy of primary
tumor in metastatic renal cell carcinoma to predict high risk
pathological features: comparison with nephrectomy assess-
ment. J Urol 2010;184(05):1877–1881

8 Karlo CA, Di Paolo PL, Chaim J, et al. Radiogenomics of clear cell
renal cell carcinoma: associations between CT imaging features
and mutations. Radiology 2014;270(02):464–471

9 Young JR, Margolis D, Sauk S, Pantuck AJ, Sayre J, Raman SS. Clear
cell renal cell carcinoma: discrimination from other renal cell
carcinoma subtypes and oncocytoma at multiphasic multidetec-
tor CT. Radiology 2013;267(02):444–453

10 Xu L, Yang C, Zhang F, et al. Deep learning using CT images to grade
clear cell renal cell carcinoma: development and validation of a
prediction model. Cancers (Basel) 2022;14(11):2574

11 Yao N, Hu H, Chen K, et al. A robust deep learning method with
uncertainty estimation for the pathological classification of renal cell
carcinoma based on CT images. J Imaging Inform Med 2024 (e-pub
ahead of print). https://doi.org/10.1007/s10278-024-01276-7

12 Wang Z, Zhang X, Wang X, et al. Deep learning techniques for
imaging diagnosis of renal cell carcinoma: current and emerging
trends. Front Oncol 2023;13:1152622

13 Uhm KH, Jung SW, Choi MH, et al. Deep learning for end-to-end
kidney cancer diagnosis on multi-phase abdominal computed
tomography. NPJ Precis Oncol 2021;5(01):54

14 Amador S, Beuschlein F, Chauhan V, et al. Deep learning
approaches applied to image classification of renal tumors: a
systematic review. Arch Comput Methods Eng 2024;31(02):
615–622

15 Dai C, Xiong Y, Zhu P, et al. Deep learning assessment of small
renal masses at contrast-enhanced multiphase CT. Radiology
2024;311(02):e232178

16 Mahootiha M, Qadir HA, Bergsland J, Balasingham I. Multimodal
deep learning for personalized renal cell carcinoma prognosis:
integrating CT imaging and clinical data. Comput Methods Pro-
grams Biomed 2024;244:107978

17 Yang YQ, Guo YX, Xiong JY, et al. Swin3d: a pretrained transformer
backbone for 3d indoor scene understanding. arXiv preprint
arXiv:2304.06906. 2023

18 Zhang Y, Shi L, Wu Y, Cheng K, Cheng J, Lu H. Gesture recognition
based on deep deformable 3D convolutional neural networks.
Pattern Recognit 2020;107:107416

19 YingX. An overviewof overfitting and its solutions. J Phys Conf Ser
2019;1168(02):022022

20 Zheng Q, Delingette H, Duchateau N, Ayache N. 3-D consistent and
robust segmentation of cardiac images by deep learning with
spatial propagation. IEEE Trans Med Imaging 2018;37(09):
2137–2148

21 Tanaka T, Huang Y, Marukawa Y, et al. Differentiation of small
(� 4 cm) renal masses on multiphase contrast-enhanced CT by
deep learning. AJR Am J Roentgenol 2020;214(03):605–612

22 Oberai A, Varghese B, Cen S, et al. Deep learning based classifica-
tion of solid lipid-poor contrast enhancing renal masses using
contrast enhanced CT. Br J Radiol 2020;93(1111):20200002

23 Zabihollahy F, Schieda N, Krishna S, Ukwatta E. Automated
classification of solid renal masses on contrast-enhanced com-
puted tomography images using convolutional neural network
with decision fusion. Eur Radiol 2020;30(09):5183–5190

24 Han S, Hwang SI, Lee HJ. The classification of renal cancer in 3-
phase CT images using a deep learning method. J Digit Imaging
2019;32(04):638–643

25 Amador S, Beuschlein F, Chauhan V, et al. Deep learning
approaches applied to image classification of renal tumors. a
systematic review. Arch Computat Methods Eng 2024;
31:615–622

26 Zheng Y, Wang S, Chen Y, Du HQ. Deep learning with a convolu-
tional neural network model to differentiate renal parenchymal
tumors: a preliminary study. Abdom Radiol (NY) 2021;46(07):
3260–3268

27 Zuo T, Zheng Y, He L, et al. Automated classification of papillary
renal cell carcinoma and chromophobe renal cell carcinomabased
on a small computed tomography imaging dataset using deep
learning. Front Oncol 2021;11:746750

Indian Journal of Radiology and Imaging © 2024. Indian Radiological Association. All rights reserved.

Predicting Renal Cell Carcinoma Subtypes and Grading Using 2D Neural Networks Gupta et al.

https://doi.org/10.1007/s10278-024-01276-7

