Subscribe to RSS
DOI: 10.1055/s-2005-863729
Sulfanyl Radical-Induced Cyclization of Linalyl Acetate to the Iridane Skeleton: A Short Synthesis of (±)-Dehydroiridomyrmecin
Publication History
Publication Date:
22 February 2005 (online)
![](https://www.thieme-connect.de/media/synlett/200504/lookinside/thumbnails/10.1055-s-2005-863729-1.jpg)
Abstract
Sulfanyl radicals promote radical cyclization both in linalyl acetate (2) and its derivative 3, leading highly selectively to monoterpenoids with an iridane skeleton. We have investigated the addition of different sulfanyl radicals such as PhS• , 4-NO2C6H4S• and PhCH2CH2S• and found that the latter radical produces the best results (87-93%). Natural iridoid dehydroiridomyrmecin (1) at an overall yield of 28% was synthesized in four steps using this method.
Key words
sulfanyl radical - iridane skeleton - addition-cyclization reaction - polyprenes - dehydroiridomyrmecin
-
1a
Radicals in Organic Synthesis
Vol. 1:
Renaud P.Sibi P. Wiley-VCH; Weinheim: 2001. -
1b
Radicals in Organic Synthesis
Vol. 2:
Renaud P.Sibi P. Wiley-VCH; Weinheim: 2001. -
1c
An Introduction to Free Radical Chemistry
Parsons AF. Blackwell Science; York: 2000. -
1d
Jasperse CP.Curran DP.Fevig TL. Chem. Rev. 1991, 91: 1237 -
1e
Barrero AF.Oltra JE.Cuerva JM.Rosales A. J. Org. Chem. 2002, 67: 2566 -
1f
Barrero AF.Rosales A.Cuerva JM.Oltra JE. Org. Lett. 2003, 5: 1935 - 2
Lee E.Lim JW.Ion CH.Sung YS.Kim YK. J. Am. Chem. Soc. 1997, 119: 8391-8392 -
3a
Handa S.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1999, 843 -
3b
Chen L.Bryon G.Pattenden G.Simonian H. J. Chem. Soc., Perkin Trans. 1 1996, 31 -
3c
Batsanov A.Chen L.Bryon G.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1996, 45 -
3d
Pattenden G.Roberts L.Blake AJ. J. Chem. Soc., Perkin Trans. 1 1998, 863 -
4a
Cossy J. Tetrahedron Lett. 1989, 30: 4113 -
4b
Cossy J.Ranaivosata J.Bellosta V. Tetrahedron Lett. 1994, 35: 8161 -
4c
Xing X.Demuth M. Eur. J. Org. Chem. 2001, 537 -
5a
Barrero AF.Herrador MM.Quílez del Moral JF.Valdivia MV. Org. Lett. 2002, 4: 1379 -
5b
Snider B. Chem. Rev. 1996, 96: 339 -
5c
Zoretic PA.Fang H.Ribeiro AA. J. Org. Chem. 1998, 63: 4779 -
5d
Zoretic PA.Wang M.Shen Z. J. Org. Chem. 1996, 61: 1806 -
5e
Snider BB.Kiselgof JN.Foxman BM. J. Org. Chem. 1998, 63: 7945 - 6
Barrero AF.Cuerva JM.Herrador MM.Valdivia MV. J. Org. Chem. 2001, 66: 4074 -
7a
Bertrand P.Ferreri C. Sulfur-Centered Radicals, In Radicals in Organic Synthesis Vol. 2:Renaud P.Sibi P. Wiley-VCH; Weinheim: 2001. p.485-504 -
7b
Miyata O.Ozawa Y.Ninomiya I.Naito T. Tetrahedron 2000, 56: 6199 -
7c
Miyata O.Naito T. C. R. Acad. Sci. Paris 2001, 4: 401 -
7d
Korshin EE.Hoos R.Szpilman AM.Konstantinovski L.Posner GH.Bachi MD. Tetrahedron 2002, 58: 2449 -
7e
Bowan WR.Fletcher AJ.Potts GBS. J. Chem. Soc., Perkin Trans. 1 2002, 2747 -
7f
Lamberto M.Corbett D.Kilburn J. Tetrahedron Lett. 2003, 1347 -
7g
Sharma A.Mahajan M. Tetrahedron 1997, 53: 13841 -
7h
Yorimitsu H.Shinokubo H.Oshima K. Synlett 2002, 5: 674 - For reviews on iridoid natural products, see:
-
8a
Nangia A.Prasuna G.Rao PB. Tetrahedron 1997, 53: 14507 -
8b
Franzyk H. Prog. Chem. Org. Nat. Prod. 2000, 79: 1 -
8c For recent paper on this topic, see:
Chavez DE.Jacobsen EN. Org. Lett. 2003, 5: 2563 -
8d
Pungitore C.Ayub M.García M.Borkowski E.Sosa M.Ciuffo G.Giordano O.Tonn C. J. Nat. Prod. 2004, 67: 357 -
8e
Chauhan K.Zhang Q.Aldrich J. Tetrahedron Lett. 2004, 45: 3339 - 9
Wang Y.Wei Q.Yang L.Liu Z.-L. J. Chem. Res., Synop. 2003, 676 - 10
Tanaka N.Nishikawa K. J. Agric. Food Chem. 2003, 51: 5906 - 11
Graikou K.Aligiannis N.Chinou IB.Harvala C. Z. Naturforsch., C: J. Biosci. 2002, 57: 95 - 12
Bermejo P.Abad MJ.Díaz AM.Fernández L.
De SantosSánchez S.Villaescusa L.Carrasco L.Irurzun A. Planta Med. 2002, 68: 106 - 13
Sakai T.Nakajiama K.Sakan T. Bull. Chem. Soc. Jpn. 1980, 53: 3683 -
14a
Yoshihara K.Sakai T.Sakan T. Chem. Lett. 1978, 433 -
14b
Sakai T.Nakajima K.Yoshihara K.Sakan T.Isoc S. Tetrahedron 1980, 36: 3115 -
16a
Beckwith A.Wagner R. J. Org. Chem. 1981, 46: 3638 -
16b
Osamu I.Minoru M. J. Am. Chem. Soc. 1979, 1815 -
16c
Walling C.Helmreich W. J. Am. Chem. Soc. 1959, 81: 1144 - 18
Giese B. Angew. Chem., Int. Ed. Engl. 1983, 22: 753 - 19
Zhang W. Tetrahedron 2001, 57: 7237 - 20
Umbreit MA.Sharpless KB. J. Am. Chem. Soc. 1977, 99: 5526 - 21
Takayuki S.Toshifumi H.Takashi I. Chem. Lett. 1976, 11: 1245 -
22a
Bonnländer B.Baderschneider B.Messerer M.Winterhalter P. J. Agric. Food Chem. 1998, 46: 1474 -
22b
The 1H NMR spectra were identical to those reported in the literature.
- 23
Balkrishna S.Wayne E.Pinick W. Tetrahedron 1981, 37: 2091 - 24
Hashimoto N.Aoyama T.Shioiri T. Chem. Pharm. Bull. 1981, 29 (5): 1475 - 25
Nangia A.Prasuna G. Tetrahedron 1996, 52: 3435 - 27
Boros A.Stermitz F. J. Nat. Prod. 1991, 54: 1173 -
28a
Boulin B.Arreguy-San Miguel B.Delmond B. Tetrahedron 2000, 56: 3927 -
28b
5% of sulfone was obtained.
- 29
Hagiwara H.Kobayashi T.Suzuki T.Ando M. Tetrahedron 2001, 57: 5039
References
The products 4, 5, 6, 9, 10, 11 (see Table [1] ) were obtained as an unseparable mixture of diastereoisomers using conventional chromatography.
17General Procedure for Radical Cyclization (4, 5, 6, 9, 10, 11). A solution of thiophenol (0.18 mL, 1.66 mmol) and AIBN (136 mg, 0.83 mmol) in benzene (16 mL) was added dropwise (8 mL/h) under an argon atmosphere to a boiling solution of 3 (200 mg, 0.83 mmol) in benzene (8 mL). The solvent was evaporated under reduced pressure. Purification of the residue by column chromatography (hexane-t-BuOMe, 20:1) afforded 9, 262 mg (90%, see Table [1] ).
26Compound 12: 1H NMR (400 MHz, CDCl3): δ = 1.17 (3 H, d, J = 7.1 Hz), 1.50 (3 H, br s), 1.69-1.81 (1 H, m), 1.90-2.04 (1 H, m), 2.13-2.25 (2 H, m), 2.82 (1 H, dq, J = 4.0, 7.0 Hz), 3.15-3.23 (1 H, m), 3.51 (1 H, br d, J = 12.9 Hz), 3.62 (3 H, s), 3.89 (1 H, br d, J = 12.9 Hz), 7.18-7.40 (5 H, m). 13C NMR (100 MHz, CDCl3): δ = 14.1, 15.0, 24.4, 31.8, 36.9, 41.0, 50.0, 51.6, 126.5, 128.3 (2 C), 130.9 (3 C), 136.7, 138.9, 175.9. IR (film): 2946, 2844, 1731, 1583, 1479, 1437, 1378, 1197, 1170, 1088, 1024, 741, 691 cm-1. HRMS-FAB: m/z calcd for C17H22O2SNa [M + Na]+: 313.1238; found: 313.1239.
30
Preparation of Dehydroiridomyrmecin (
1).
Trifluoroacetic anhydride (1.02 mL, 7.32 mmol) was added to a stirred solution of sulfoxide 13 (560 mg, 1.83 mmol) in CH2Cl2 (73 mL) at 0 °C. The mixture was stirred for 30 min at 0 °C and then 1 N aq NaOH (18 mL) and THF (60 mL) were added and stirring continued for 4 h at r.t. The reaction mixture was extracted with Et2O and the combined organic layer was washed with aq NH4Cl and brine. Evaporation of the solvent followed by column chromatography (petroleum ether-Et2O, 5:1) furnished 60 mg (11%) of methyl 7-trifluoroacetoxy irid-1-ene-9-oate (14) and 140 mg (46%) of dehydroiridomyrmecin (1).
Compound 14: 1H NMR (400 MHz, CDCl3): δ = 1.12 (3 H, d, J = 7.0 Hz), 1.74 (3 H, s), 1.74-1.82 (1 H, m), 1.97-2.05 (1 H, m), 2.15-2.35 (2 H, m), 2.75 (1 H, dq, J = 3.9, 7.0 Hz), 3.03 (1 H, br s), 3.56 (3 H, s), 4.88 (1 H, d, J = 12.2 Hz), 4.97 (1 H, d, J = 12.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 14.3, 14.4, 24.6, 37.3, 41.2, 50.1, 51.5, 63.4, 124.6, 128.4, 144.9, 175.6 (2 C). IR (film): 2952, 1783, 1734, 1457, 1348, 1220, 1164 cm
-
1.
Dehydroiridomyrmecin (
1): 1H NMR [400 MHz, (CD3)2CO]: δ = 1.01 (3 H, d, J = 7.2 Hz), 1.40-1.51 (1 H, m), 1.70 (3 H, s), 1.85-1.97 (1 H, m), 2.20-2.30 (1 H, m), 2.35-2.45 (1 H, m), 2.90 (1 H, quint., J = 7.2 Hz), 3.15-3.25 (1 H, m), 4.77 (1 H, d, J = 13.1 Hz), 4.87 (1 H, d, J = 13.1, Hz). 13C NMR [100 MHz, (CD3)2CO]: δ = 11.6, 13.6, 27.1, 38.3, 40.3, 46.9, 65.8, 130.0, 137.0, 174.9. IR (film): 2948, 1733, 1437, 1376, 1206, 1156 cm
-
1. HRMS (CI): m/z calcd for C10H15O2 [M + H]+: 167.1072; found: 167.1070.