
C. THIOT, M. SCHMUTZ, A. WAGNER, C. MIOSKOWSKI* (UNIVERSITÉ LOUIS PASTEUR AND NOVALYST DISCOVERY, ILLKIRCH-GRAFFENSTADEN, ICS-CNRS UPR22, STRASBOURG, FRANCE)

A One-Pot Synthesis of (*E*)-Disubstituted Alkenes by a Bimetallic [Rh-Pd]-Catalyzed Hydrosilylation/Hiyama Cross-Coupling Sequence

Chem. Eur. J. 2007, 13, 8971-8978.

[Rh-Pd] Ionic Gel-Soaked Bimetallic Catalyst

Significance: The [Rh-Pd] ionic gel-soaked bimetallic catalyst for the one-pot hydrosilylation/Hiyama cross-coupling reactions was described. Thus, the reaction of Merrifield resin $\bf 1$ with Et₃N, followed by the anion exchange of $\bf 2$ with Nal afforded the polyionic iodide gel $\bf 3$. The polyionic iodide gel $\bf 3$ was treated with RhCl(PPh₃)₃ and Pd(OAc)₂ to provide the [Rh-Pd] bimetallic catalyst $\bf 4$. The one-pot synthesis of E-disubstituted alkene via hydrosilylation/Hiyama cross-coupling reaction was carried out in dioxane in the presence of $\bf 4$ and subsequent addition of TBAF to give the corresponding E-alkenes in 50–95% yield.

Comment: It is noteworthy that the Sonogashira coupling side products were not obtained, even without sequential addition of coupling partners in the present procedure. The high chemoselectivity is attributed to a slower Sonogashira coupling in polyionic gel in the absence of copper co-catalysts. For the reaction of phenyl acetylene with phenyl iodide, the catalyst can be recycled three times without loss of the catalytic activity and stereoselectivity (>99% yield and E/Z > 99:1 for 1st-3rd cycles); however, the product yield decreased in the 4th cycle (78% yield and E/Z > 99:1).

SYNFACTS Contributors: Yasuhiro Uozumi, Yohei Oe Synfacts 2008, 1, 0099-0099 Published online: 18.12.2007 **DOI:** 10.1055/s-2007-991458; **Reg-No.:** Y12907SF

Category

Polymer-Supported Synthesis

Key words

bimetallic catalysts

hydrosilylation

Hiyama crosscoupling

