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Summary
Atherosclerotic cardiovascular disease and its thrombotic com-
plications are the principal causes of morbidity and mortality in
patients with type-2 diabetes.Aspirin reduces the risk of throm-
botic events in a broad range of patients with vascular disease
and, in selected individuals, is beneficial for primary prevention.
Although recommended by existing guidelines, in secondary and
in primary prevention trials the clinical efficacy of low-dose as-
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pirin in patients with diabetes appears to be substantially lower
than in individuals without diabetes. In this review, we discuss
possible mechanisms that may contribute to reduce the anti-
thrombotic activity of aspirin in diabetes.We also discuss adju-
vant therapies used in diabetic patients that may potentially im-
prove the antithrombotic efficacy of aspirin.
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The association between diabetes and cardiovascular (CV)
disease and its thrombotic sequelae is well established.
Macrovascular complications are the principal causes of

morbidity and mortality in patients with type-2 diabetes. In addi-
tion to classical cardiovascular risk factors such as dyslipidemia,
obesity and hypertension, which are more common in diabetic
patients, other metabolic abnormalities such as hyperglycemia,
hyperinsulinism and insulin resistance, advanced glycosilated
end products (AGEs) and increased oxidative stress characterize
diabetes. All these factors likely provoke molecular events in en-
dothelial cells and in circulating platelets and leukocytes that
contribute to the development and progression of atherosclerosis
and increase cardiovascular risk in diabetic patients (1). Optimal
clinical management of vascular disease in diabetes remains to
be established. While the link between microvascular compli-
cations and hyperglycemia has been clearly established, the ef-
fect of intensive pharmacological treatment for metabolic con-
trol on macrovascular complications is less evident (2). Fur-
thermore, a more than two-fold increased risk of CV events is al-
ready present in subjects with impaired glucose tolerance (IGT),
that is normal fasting blood glucose levels and elevated values

after oral glucose load (3). Thus additional therapeutic ap-
proaches appear to be needed to reduce the high cardiovascular
risk associated with impaired glucose metabolism.

The clinical evidence of lower efficacy of
aspirin in diabetic patients
Aspirin reduces the risk of events in a broad range of patients
with vascular disease in secondary prevention trials and in se-
lected individuals in primary prevention trials. However, not all
of the population at risk is protected, and the existence of 'aspirin
non-responders' has been advocated as a possible explanation for
these findings (4–7).The use of low-dose aspirin in subjects with
diabetes is recommended by existing guidelines (8–9). Despite
the general consensus, the evidence supporting these recommen-
dations is surprisingly scant.The only evidence to support the ef-
ficacy of aspirin in the primary prevention of cardiovascular dis-
ease (CVD) in diabetic patients comes from the U.S. Physicians’
Health Study, in which a 60% reduction in the risk of myocardial
infarction was noted (10). This risk reduction was not statis-
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tically significant, due to the small number of events (11/275 in
the aspirin group vs. 26/258 in the placebo group; p=0.22). Fur-
thermore, only male physicians were enrolled in the early
eighties, when other effective strategies for CVD prevention
(e.g. ACE inhibitors and statins) were not yet available. Recent
observations indicate that diabetic patients receive lower cardio-
protective benefit from aspirin than non-diabetic ones. In fact, a
meta-analysis on the efficacy of antiplatelet therapy in the pre-
vention of major cardiovascular events showed a clear benefit for
the whole population of over 140,000 subjects (22% reduction in
the risk of major CV events), but no statistically significant
benefit in the subgroup of about 5,000 diabetic patients (7% risk
reduction) (11). Within the meta-analysis, the Early Treatment
Diabetic Retinopathy Study (ETDRS) trial was the only one spe-
cifically conducted in diabetic patients. In this trial, treatment
with a daily dose of 650 mg of aspirin for an average of 5 years
was associated with a non-significant 9% reduction in serious
vascular events (vascular death, non-fatal MI, non-fatal stroke)
in 3,711 diabetic patients with and without previous CVD (12).

More recently, a subgroup analysis of over 1,000 diabetic pa-
tients in the Primary Prevention Project (PPP) (13) showed that
low-dose aspirin only marginally reduced the risk of major CV
events after three years of follow-up (relative risk = 0.90; 95% CI
0.50–1.62) (14). Though not conclusive, these results suggest
that the diabetic patient may represent a special case of aspirin
non-responder, although, to our knowledge, no specific studies
have fully explored this hypothesis.

Diabetes is also often associated with other cardiovascular
risk factors, particularly hypercholesterolemia. The presence of
elevated values of total cholesterol was associated with lower
benefit from aspirin in the Physicians’Health Study (10) and the
Thrombosis Prevention Trial (15).

Reasons for aspirin therapeutic failure
The significance of the therapeutic failure of aspirin in cardiov-
ascular disease remains controversial due to the lack of standard-
ized definitions, detection methods, and clinical studies (16–18).
However, recent studies indicated that the laboratory evidence of
reduced aspirin responsiveness, defined either by inadequate in-
hibition of platelet function in vitro (7) or by inadequate suppres-
sion of thromboxane A2 (TxA2) production in vivo (6), may
identify patients who will experience cardiovascular events, on
aspirin treatment, at a higher rate than aspirin-sensitive patients.

Poor compliance or insufficient dosing may reduce the effec-
tiveness of aspirin. However, these factors are unlikely to have
influenced results in clinical trials. First, compliance is usually
more controlled in clinical trials than in normal practice; second,
high-dose aspirin appears to be no more effective than low-dose
in diabetic individuals. The ETDRS and the PPP trials yielded
similar results, despite use of 650 mg aspirin in the former (12),
and low-dose aspirin in the latter (14). Thus, it seems reasonable
that intrinsic mechanisms of action of the drug accounts for its
lower efficacy in individuals with diabetes.

Two main factors intrinsic to the mechanism of action of as-
pirin may be responsible for its failure to produce the expected
pharmacological effect in diabetic patients:
1. a pro-inflammatory, pro-thrombotic environment conducive

to platelet activation and thrombus formation through path-
ways that no longer require either platelet-activation amplifi-
cation loops or the vasoconstriction mediated by TxA2, the
metabolic product of the aspirin target cycloxygenase-1
(COX-1);

2. failure of aspirin to adequately suppress TxA2 production.

Determinants of the thrombogenic environment
in diabetes
The role of endothelial dysfunction and inflammation
Endothelial dysfunction and inflammation may play a key role in
the initiation and progression of diabetic macrovascular disease
(1). Diabetic macrovascular disease is characterized by acceler-
ated progression of atherosclerosis (19) accompanied by a
greater incidence of complications such as plaque ulceration,
fissuration and thrombosis. More extensive macrophage in-
vasion and inflammation appears to occur in atherosclerotic
plaques of diabetic patients as compared with non-diabetic ones
(20). Inflammatory marker predictors of cardiovascular risk,
such as C-reactive protein and interleukin-6 (21, 22), are elev-
ated in diabetic patients (23, 24). C-reactive protein may induce
an inflammatory-thrombogenic phenotype in endothelial cells
by up-regulating the expression of adhesive molecules (25), and
down-regulating nitric oxide (NO) synthase transcription and
NO release (26). Interestingly, these effects of C-reactive protein
are significantly increased by high glucose concentrations in
vitro (27). Inflammatory markers have also been shown to be
predictors of type-2 diabetes development (28), strengthening
the concept that sub-clinical vascular inflammation is part of a
pre-diabetic condition. Circulating levels of the proinflamma-
tory cytokine, CD40 ligand (CD40L), are elevated in diabetic pa-
tients and reduced following thiazolidinedione treatment (29,
30). CD40-CD40L signaling in endothelial cells and in mono-
cyte-macrophages mediates a broad range of pro-atherogenic
functions (31), including generation of reactive oxygen species
(ROS) generation and expression of adhesive molecules, macro-
phage chemoattractant protein-1 (MCP-1) and interleukin-8
(IL-8) (32–34).The bulk of soluble CD40L in circulation derives
from activated platelets. In hypercholesterolemic mice, the dis-
ruption of CD40 signaling reduces the progression of atheroscle-
rosis (35). Upregulation of CD40L in circulation suggests pla-
telet activation and pro-inflammatory, pro-atherosclerotic state
in diabetic patients. CD40L induces tissue factor (TF) ex-
pression on monocytes and contributes to stabilize platelet arter-
ial thrombi in in vivo injury models (36).

Several factors specific for the diabetic condition, including
hyperglycemia, hyperinsulinemia and insulin resistance, in-
creased oxidative stress and AGEs, may induce endothelial dys-
function (Fig. 1). An impaired endothelium-dependent vasodi-
lation, due to a reduced release of endothelium-derived relaxing
factors including NO and prostacyclin, has been demonstrated in
animal models of diabetes and in humans (37, 38). Experimental
evidence indicates that hyperglycemia, hyperinsulinemia, in-
creased oxidative stress and AGEs may directly upregulate a var-
iety of humoral and cellular inflammatory reactions (39), which
play an important role in atherothrombosis (40). In particular, in-
creased expression of leukocyte adhesive molecules occurs in
endothelial cells exposed to high glucose concentrations in vitro
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(41), and acute hyperglycemia increases circulating plasma le-
vels of soluble ICAM-1 in normal subjects (42). In accordance
with these observations, circulating levels of different endothe-
lial-derived adhesive molecules are increased in diabetic patients
(42–47). Not only high glucose concentrations per se, but also
AGEs, which are increased in diabetic patients, induce a pro-in-
flammatory phenotype in endothelial cells, including upregu-
lation of adhesive molecules (37, 48). Circulating monocytes
and neutrophils also undergo rapid upregulation of adhesive
molecules after acute hyperglycemia in both normal subjects and
type-2 diabetic patients (49). In vitro, high glucose concen-
trations induce the expression of a variety of proinflammatory
cytokines and β2-integrins in monocytic cells (50) and increase
monocyte and neutrophil adhesion to endothelial cells (41, 51).

A number of observations indicate that diabetes is associated
with an upregulation of circulating thrombogenic factors. Many
studies suggest that platelet function is upregulated (52, 53) and
that the balance between procoagulant and profibrinolytic fac-
tors is altered in diabetes. Increased levels of von Willebrand fac-
tor, factors VII and VIII and plasminogen activator inhibitor-1
(PAI-1) (39, 54–56) have all been reported. Furthermore, leuko-
cytes are activated and release increased amounts of ROS (57,
58). Increased expression of tissue factor, the major monocyte-
macrophages-associated procoagulant activity, has been re-

ported in patients with diabetes (59–61). Circulating cell mem-
brane fragments carrying procoagulant activity, the so-called
microparticles, are also elevated (56, 59). Higher numbers of tis-
sue factor exposing, leukocyte-derived, circulating micropar-
ticles correlate with the metabolic syndrome in type-2 diabetic
patients without clinical evidence of vascular disease (61). Up-
regulation of tissue factor expression by leukocytes may con-
tribute to formation of thrombin and increased thrombogenicity
observed in diabetic patients by Rauch et al. (62).

The role of platelets
Platelets play a key role in atherothrombosis, and an impaired
platelet response to the inhibitory effect of aspirin has been used
as a marker to define 'aspirin resistance' (7).

Pioneering studies demonstrated elevated levels of urinary
metabolites ofTxA2 in diabetic patients, which were attributed to
increased platelet activation in vivo (63, 64).

A number of experimental studies, recently reviewed by
Vinik et al (65), indicate the existence of functional abnormal-
ities in platelets from diabetic patients. In particular, early work
showed an increased aggregability of platelets from individuals
with diabetes. This response was attributed to an increased activ-
ity of the TxA2 synthase system (66), but this observation was
not confirmed by others (67). Moreover, an increased response

Figure 1: Patho-physiological pathways potentially implied in the reduced clinical efficacy of aspirin in diabetes.
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of diabetic platelets to different agonists has not been consist-
ently demonstrated (68, 69). More recently, Hu et al reported in-
creased platelet and leukocyte activation and interaction in
type-1 diabetes with microangiopathy (70).

With regard to insulin effect on platelet function, previous
studies have yielded complex results. Insulin may act as negative
regulator of platelet function and reduces platelet response to
different agents (71). Interestingly, this effect of insulin is absent
in obese individuals as well as in obese type-2 diabetic patients
(72, 73), suggesting that insulin resistance may also occur in pla-
telets and may be responsible for an increased platelet reactivity.
In contrast, other studies showed platelet activation, rather than
inhibition by insulin. For example, insulin has been reported to
enhance platelet fibrinogen binding in type-1 diabetic patients
(74). It has been suggested that insulin may exert an opposite ef-
fect on platelets at physiological and supraphysiological concen-
trations (75). This also suggests that platelet abnormalities may
be different in type-1 and type-2 diabetes.

Besides insulin resistance, hyperlipidemia seems to be as-
sociated with an increased platelet response in vitro (76) and in
vivo (77).Although previous studies failed to detect an increased
platelet aggregation response in patients with hyperlipoproteine-
mia (78), it was recently reported that patients with cardiovascu-
lar disease, who show poor platelet responsiveness to aspirin in
in vitro aggregation assay, have significantly higher concen-
trations of total and LDL cholesterol than patients whose pla-
telets are responsive to aspirin (79).

Gum et al (80) recently investigated the incidence and clini-
cal predictors of 'aspirin resistance', defined as reduced platelet
sensitivity to the anti-aggregating effect of aspirin, in a cohort of
325 patients with stable cardiovascular disease who were receiv-
ing aspirin (325 mg/day). In this group of patients, 5.5% were
found to be aspirin non-responders. However, there was no dif-
ference in aspirin sensitivity between diabetic and non-diabetic
patients. The low number of diabetic patients in this study does
not allow definitive conclusions; however, on the basis of these
data, it appears that the evidence of reduced aspirin responsive-
ness by platelet function tests does not necessarily correlate with
clinical evidence of the aspirin failure, as suggested by inad-
equate protection of diabetic patients from cardiovascular
events. In contrast, a more recent study documented a reduced
response to aspirin of platelets from type-2 diabetic patients
compared with platelets from healthy subjects. The reduced re-
sponse to aspirin in diabetic patients was associated with poor
metabolic control (81). Therefore, an intrinsic difference in sen-
sitivity to aspirin of platelets seems not to completely explain the
reduced anti-thrombotic efficacy of aspirin in diabetic patients.
Rather, cross talk between circulating inflammatory mediators,
the vessel wall and platelets may contribute to the failure of as-
pirin to adequately prevent cardiovascular events in diabetic pa-
tients (Fig. 1) (82).

Inadequate suppression ofTxA2-production

Pathways of aspirin-insensitive TxA2 synthesis
Pharmacological failure of aspirin could also involve TxA2 pro-
duction via aspirin-insensitive eicosanoid biosynthetic pathways
(83), that is from sources other than platelet COX-1. COX-2, an

inducible enzyme mainly expressed in monocyte-macrophages
exposed to inflammatory stimuli, is a major candidate as an as-
pirin-insensitive source of TxA2. Interestingly, monocytes iso-
lated from diabetic patients show an increased ability to produce
TxA2 following stimulation in vitro (59). The exposure of cul-
tured endothelial cells to high glucose concentrations results in
upregulation of COX-2, down-regulation of NO synthase, and
alterations in the balance of prostanoid synthesis in favor of
TxA2 with respect to PGI2 (84) (Fig. 1).

It has been suggested that aspirin-insensitive COX-2 is an ad-
ditional source ofTxA2 in platelets (85).Although COX-2 can be
found in platelets under pathological conditions (86), the meta-
bolic relevance of this enzyme in platelets remains elusive (86,
87). No data are available on the expression of COX-2 in pla-
telets from individuals with diabetes.

COX-1 isoforms insensitive to aspirin
Although a number of single nucleotide polymorphisms in the
gene encoding for COX-1 exists (88), there is no evidence that
genetic variations of COX-1 make the enzyme resistant to as-
pirin or that single nucleotide mutations in the COX-1 gene are
more frequent in diabetes.

Single nucleotide polymorphisms in the gene encoding for
the β3 chain of the fibrinogen receptor have been suggested to be
associated with a reduced anti-platelet efficacy of aspirin (89);
however, there are no data suggesting that these polymorphisms
are more highly represented in diabetes.

In summary, many lines of evidence indicate that the pro-in-
flammatory and pro-thrombotic state that accompanies diabetes
may create a milieu in which complete blockade of COX-1 by as-
pirin does not modify the overall platelet response, and has little
effect on thrombus formation. The inflammatory state may also
contribute to aspirin-insensitiveTxA2 synthesis, via an increased
COX-2 activity.

It is, thus, plausible that pharmacological interventions ca-
pable of modifing the inflammatory burden associated with dia-
betes may improve the efficacy of aspirin.

How to modify the inflammatory burden
Increasing evidence indicates that targeting traditional risk fac-
tors such as hypercholesterolemia, hypertension, and insulin re-
sistance using HMG-CoA reductase inhibitors (statins) and fi-
brates, angiotensin converting enzyme (ACE) inhibitors and
β−blockers, and thiazolidinediones (TZD), results in a signifi-
cant improvement in a number of circulating markers of inflam-
mation and endothelial dysfunction. Recent experimental data
indicate that through pleiotropic actions, some classes of these
drugs may also directly affect molecular pathways of inflam-
mation, which have been implicated in the pathogenesis, pro-
gression, and complications of both atherosclerosis and dia-
betes.

Here we will focus our attention on statins, ACE inhibitors
and TZDs. Indeed, in recent years a substantial amount of clini-
cal and experimental data has accumulated suggesting that these
classes of drugs exert effects on multiple targets, to reduce in-
flammatory events potentially involved in atherosclerosis and
aspirin resistance (90–92) (Fig. 2).
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Statins
The beneficial effects of statins in the primary and secondary
prevention of coronary heart disease have been demonstrated in
several large-scale clinical trials (93). Recent evidence suggests
that the clinical benefits obtained with statin therapy may extend
beyond their effect on blood cholesterol levels and may involve a
potential anti-inflammatory effect (94–96). A large body of ex-
perimental studies supports the concept that the putative anti-in-
flammatory effect of statins is mediated by the inhibition of a
variety of inflammatory-thrombogenic functions in leukocytes
and improvement of endothelial dysfunctions (90). The sites of
plaque rupture are often the sites of inflammatory reaction. Ac-
tivated inflammatory cells at these sites (97) are the major cellu-
lar source of matrix metalloproteases, which contribute to the
proteolytic activity, TF, that induces the formation of thrombin,
and COX-2, which may be the source of aspirin insensitive eicos-
anoids (98). In experimental models in primates, statin therapy
results in a significant reduction in levels ofVCAM-1 expression
on the endothelium, macrophage infiltration and interleukin-1β
and tissue factor in atherosclerotic lesions (99).

Statins are potent inhibitors of the expression and function of
adhesion molecules in leukocytes (100), thus reducing leukocyte
adhesion to endothelial cells in vitro (101), as well as leukocyte
recruitment in animal models (102). Statins also increase the ex-
pression of endothelial NO synthase (103), and reduce TF ex-
pression in human monocytes (104) and in cultured endothelial
cells (105). The biochemical effects underlying such a wide var-
iety of cellular effects of statins remain to be fully clarified. By
inhibiting L-mevalonic acid synthesis, statins affect not only the
production of cholesterol, but also that of other isoprenoids such

as farnesylpyrophosphate and geranylgeranylpyrophosphate.
The covalent binding of these lipids to a variety of cell signaling
proteins allows their proper subcellular localization and func-
tion. Among these proteins, small GTP-binding proteins of the
Rho family have been consistently implicated to explain the in-
hibitory effects on inflammatory cell function, including: leuko-
cyte-endothelial cell adhesion (101), endothelial NO synthase
expression (103), TF expression in human monocytes (104) as
well as in cultured endothelial cells (105) in vitro. By reducing
the inflammatory reaction in atherosclerotic lesions, statins
treatment may improve plaque stability in humans (106).

Clinical trials have shown that statins reduce cardiovascular
events in individuals with diabetes (107). Similarly to non-dia-
betic patients, the beneficial effect of statins on dyslipidemia is
flanked by positive effects on vascular function and markers of
systemic inflammation in diabetic patients (108), suggesting that
these drugs may also improve vascular response in the athero-
thrombotic context of diabetes. If an upregulated vascular in-
flammatory reaction is responsible for aspirin resistance, it is
plausible to hypothesize that statins would also improve the clini-
cal response to aspirin therapy.

ACE inhibitors
There is increasing evidence that ACE inhibitor therapy reduces
cardiovascular risk in people with diabetes (109, 110). A number
of experimental studies in animal models and humans have
shown thatACE inhibition significantly reduces endothelial dys-
function associated with atherosclerosis (111). Moreover, angio-
tensin II, the AT1 receptor, and ACE are expressed in macro-
phages at the shoulder region of coronary atherosclerotic plaque

Figure 2: Mechanisms of action of statins, ACE-inhibitors andThiazolidinediones that could interfere with the pathways leading to
a reduced clinical efficacy of aspirin.
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from patients with unstable angina (112), as well as in endothe-
lial cells, vascular smooth muscle cells (VSMC), and immune
cells of carotid atherosclerotic lesions (113), suggesting a poss-
ible role of ACE in the development and progression of atheros-
clerosis. In fact, angiotensin II induces the synthesis and release
of IL-6, which co-localizes with angiotensin II, AT1 receptor,
and ACE in macrophages in coronary atherosclerotic plaque
(112). In agreement with these observations, in a placebo-con-
trolled trial, Soejima et al found that treatment with ACE in-
hibitors reduced circulating levels of MCP-1 and TF in patients
who had had myocardial infarction (114). In fact, in vitroTF syn-
thesis in monocytes and endothelial cells stimulated by endot-
oxin or inflammatory cytokines is enhanced by angiotensin II,
and, conversely, inhibited by competitive inhibitors of its recep-
tor AT1 (115–117), indicating that ACE inhibition may prevent
the increased thrombogenic potential mediated by TF at the site
of atherosclerotic lesions.

Thiazolidinediones (TZDs)
Although initially identified as important regulators of meta-
bolic processes in adipocytes and hepatocytes (118), recent ex-
perimental data established that activation of Peroxisome Prolif-
eration Activated Receptors (PPARs) by natural or pharmaco-
logical ligands may switch off a number of inflammatory re-
sponses in endothelial cells, VSMC, circulating monocytes as
well as in macrophages at the site of atherosclerotic plaque
(119).

In particular, TZDs, pharmacological PPARγ agonist, have
been shown to inhibit VSMC proliferation and migration, an im-
portant event of the vascular response to injury, in vitro (120) and
in vivo (121), and inhibit the production of inflammatory cyto-
kines by monocyte-macrophages in vitro (122, 123). Moreover,
troglitazone reduces the expression of adhesive molecules in cul-
tured endothelial cells and the adhesion of leukocytes (124, 125).
This effect was also observed with pioglitazone, which de-
creased monocyte adhesion to endothelial cells under flow, poss-
ibly through a modulation of the small GTPase, RhoA, or focal
adhesion kinase activity (126).

Treatment with troglitazone also reduced monocyte-macro-
phages homing in atheroscletic plaques of apoE-deficient mice
(125) and inhibited the development of atherosclerosis in LDL-
receptor-deficient mice (127). Troglitazone showed an effect on
the development of atherosclerosis in WHHL rabbits com-
parable to that of pravastatin; interestingly, the two drugs showed
a synergistic effect (128). These data in experimental models
have been supported by a study in type-2 diabetic patients show-
ing that TZD treatment is associated with reduced carotid athe-
rosclerotic lesions (129). More recently, the anti-inflammatory
effects of TZDs have been further supported by the evidence that
these drugs reduce a number of inflammatory markers in dia-
betic patients. Treatment with troglitazone decreased by 60%
circulating levels of C-reactive protein (23) and rosiglitazone
significantly reduced circulating levels of C-reactive protein,
metalloprotease-9 (MMP-9), and leukocytes in type-2 diabetic
patients (24). In the same type of patients, both rosiglitazone and
troglitazone significantly reduced circulating levels of CD40L

(26, 27), an important pro-inflammatory mediator playing a role
in the development of atherosclerosis (28). Despite platelets
being anucleated cells, PPARγ agonists have been shown to re-
duce platelet activation both in vitro (130, 131) and in vivo in car-
diovascular patients without diabetes (132). The unexpected
anti-platelet activity of TZD has been recently clarified by the
discovery of functional PPARγ in platelets and in megakaryo-
cytes (133). Thus, like statins, TZD might improve the clinical
response of diabetic patients to aspirin, by reducing the inflam-
matory burden of diabetic atherosclerosis and inhibiting platelet
response.

Conclusions
On the basis of the existing data it is reasonable to hypothesize
that:
1. an upregulated vascular inflammatory-thrombogenic state is

responsible for both the increased cardiovascular risk and the
“suspected” clinical inefficacy of aspirin in diabetic patients;

2. different classes of drugs, including statins, ACE inhibitors,
and TZD, with documented effects on oxidative stress and ni-
tric oxide metabolism, coagulation, inflammation and ad-
hesion of immune cells to the vascular endothelium, can rep-
resent hypothetical candidates to improve the anti-throm-
botic efficacy of aspirin in diabetic patients.

These hypotheses remain to be investigated at the laboratory
bench and, even more urgently, in randomized clinical trials. The
latter should test the effects of low-dose aspirin in populations of
adequate sample size, with a strict control of glucose metabolism
and cardiovascular risk factors. The use of a factorial design, in-
cluding statins, the class of drugs for which pleiotropic effects
have been more extensively described, could help to clarify
whether aspirin efficacy could be improved by the concomitant
use of other drugs with anti-inflammatory properties.

The results of these studies would greatly improve our
knowledge about the effectiveness of existing strategies for the
prevention and treatment of cardiovascular complications in dia-
betic patients.
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