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1. Introduction
Recent developments in medicine, notably 
the trends towards precision medicine and 
to “learning health systems” are accompa-
nied by significant needs of privacy protec-
tion. This includes methods for secure 
 exchange of data among systems “without 

making patients identifiable” [1]. Secure 
data sharing is needed for various appli-
cations [2], including phenome-wide as-
sociation studies [3] and the secure sec-
ondary use of operational clinical data [4]. 
In research environments, increasingly, the 
sharing of research data is a central aspect 
which is also required from public spon-

sors [5]. At the same time, the number of 
health data breaches is growing [6] and 
there is a significant public pressure to en-
sure the anonymity of data subjects [7]. In 
an era of large scale collection and process-
ing of sensitive personal data this is a chall-
enging task [8].
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Summary
Background: Data sharing is a central 
 aspect of modern biomedical research. It is 
accompanied by significant privacy concerns 
and often data needs to be protected from 
re-identification. With methods of de-identifi-
cation datasets can be transformed in such a 
way that it becomes extremely difficult to 
link their records to identified individuals.  
The most important challenge in this process 
is to find an adequate balance between an 
increase in privacy and a decrease in data 
quality.
Objectives: Accurately measuring the risk of 
re-identification in a specific data sharing 

scenario is an important aspect of data de-
identification. Overestimation of risks will sig-
nificantly deteriorate data quality, while 
underestimation will leave data prone to at-
tacks on privacy. Several models have been 
proposed for measuring risks, but there is a 
lack of generic methods for risk-based data 
de-identification. The aim of the work de-
scribed in this article was to bridge this gap 
and to show how the quality of de-identified 
datasets can be improved by using risk models 
to tailor the process of de-identification to a 
concrete context.
Methods: We implemented a generic de-
identification process and several models for 
measuring re-identification risks into the ARX 
de-identification tool for biomedical data. By 
integrating the methods into an existing 
framework, we were able to automatically 
transform datasets in such a way that infor-

mation loss is minimized while it is ensured 
that re-identification risks meet a user-de-
fined threshold. We performed an extensive 
experimental evaluation to analyze the im-
pact of using different risk models and 
 assumptions about the goals and the back-
ground knowledge of an attacker on the 
quality of de-identified data.
Results: The results of our experiments show 
that data quality can be improved signifi-
cantly by using risk models for data de-
identification. On a scale where 100 % repre-
sents the original input dataset and 0 % rep-
resents a dataset from which all information 
has been removed, the loss of information 
content could be reduced by up to 10 % 
when protecting datasets against strong ad-
versaries and by up to 24 % when protecting 
datasets against weaker adversaries.
Conclusions: The methods studied in this ar-
ticle are well suited for protecting sensitive 
biomedical data and our implementation  
is available as open-source software. Our 
 results can be used by data custodians to 
 increase the information content of de-ident-
ified data by tailoring the process to a spe-
cific data sharing scenario. Improving data 
quality is important for fostering the adop-
tion of de-identification methods in biomedi-
cal research.
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A central aspect of anonymization is to 
protect data from re-identification. Protec-
tion against this privacy threat can be im-
plemented by transforming datasets in 
order to ensure that it is extremely difficult 
to link its records to identified individuals 
[9]. This process is called data de-identifi-
cation [10]. The most wide-spread trans-
formation methods for de-identifying 
health data are generalization and suppres-
sion (i.e. removal) of attribute values [11]. 
The former is typically performed with 
user-defined domain generalization hier-
archies. An example is shown in ▶ Figure 
1, where values of the attribute age are 
transformed into groups with decreasing 
precision. A well-known privacy model 
using such transformations is the Safe Har-
bor method, which is defined in the Pri-
vacy Rule of the US Health Insurance Port-
ability and Accountability Act (HIPAA) 
[12]. This method specifies 18 rules for 
transforming attributes which are associ-
ated with a high-risk of re-identification. 
Among these rules are the suppression of 
names and the generalization of dates. 
 Another privacy model which is often 
 implemented with generalization and sup-
pression is k-anonymity. It requires that a 
dataset is to be transformed in such a way 
that each record cannot be distinguished 
from k-1 other records [13].

Unfortunately, privacy risks can never 
be reduced to completely zero [11]. There-
fore, national and international laws, such 
as HIPAA [14], European national laws, 
and the European Directive on Data Pro-
tection [15], recognize the importance of 
considering context when implementing 
measures for data protection. For example, 
the EU Directive states that “account 
should be taken of all the means likely rea-
sonably to be used [...] to identify the said 
person [emphasis added]” [15]. The de-
identification of data results in loss of 
 information. Thus, finding an adequate 
balance between an increase in privacy and 
a decrease in data quality is a central chal-
lenge [16]. Different methods for de-iden-
tifying data result in datasets with different 
residual risks of re-identification and dif-
ferent degrees of utility for different appli-
cations. To consider this, methods must be 
tailored to the context. One important as-
pect is to accurately measure the re-identi-
fication risks of a dataset in relationship to 
a given data sharing scenario. This includes 
considering the characteristics and sensi-
tivity of the data as well as the aim and 
possibilities of potential adversaries. Over-
estimation of risks will significantly 
 deteriorate data quality, whereas underesti-
mation will leave the data prone to attacks 
on privacy.

2. Objectives
Although several models for measuring the 
re-identification risks of biomedical data-
sets have been proposed, there is a lack of 
generic methods which can be used to 
automatically de-identify data with a wide 
variety of such models. This prevents data 
controllers from performing context-aware 
de-identification, which has a significant 
potential to improve data quality. The ob-
jective of the work described in this article 
was to bridge this gap by implementing 
models for managing re-identification risks 
into an open source anonymization tool for 
biomedical data. In this process, we devel-
oped a generic de-identification method 
and complemented an existing implemen-
tation of k-anonymity with three additional 
risk models. As all methods were realized 
within a common framework, we were able 
to perform an extensive experimental 
 comparison which shows how the quality 
of de-identified data can be improved by 
considering the goals and the background 
knowledge of an attacker.

3. Re-identification Attacks

Typically, datasets with personal data rep-
resent a sample from a larger population of 
individuals. In a data sharing scenario, it is 
assumed that the dataset has already been 
stripped from any direct identifiers, such as 
names, but that the adversary has access to 
some background knowledge about the 
population which comprises identifying 
 information. Typical examples of back-
ground knowledge are voter registration 

Figure 1  
Domain generalization 
hierarchy for the at-
tribute age.

Figure 2  
Examples of different 
re-identification risks. 
An arrow indicates 
that each element in 
a group of indistin-
guishable records in 
the population table 
matches all records 
in the according 
group in the sample. 
Risks can then be de-
rived from the sizes 
of these groups.
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lists, which can easily be obtained in many 
US states [17]. As is shown in ▶ Figure 2, 
the adversary may use this information to 
link a disclosed dataset containing sensitive 
data (diagnoses in our example) with a da-
taset containing identifying information. 
The attributes which can be used to per-
form such attacks are called quasi-identi-
fiers. While successful linkage attacks have 
been demonstrated by examples involving 
real-world data [17], they are complicated 
in general as the chance of success depends 
on a variety of parameters.

Most importantly, it has to be seen that 
a successful re-identification attack is ac-
tually a two-step process. First, the attacker 
needs to determine whether or not data 
about a specific individual is contained in 
the dataset (membership). Second, the indi-
vidual must be linked with the correspond-
ing record. For both process steps, the 
probability of success depends on the 
 distinguishability (or uniqueness) of the in-
dividual’s records in the sample as well as in 
the adversary’s background knowledge.

The data about each individual is part of 
an equivalence class of records with ident-
ical values of those quasi-identifiers which 
are used by the adversary. Let us consider 
an individual I from the population. We 
denote the group containing data about I in 
the population with P and the group con-
taining data about I in the sample with S. 
We note that S is empty if I is not contained 
in the sample. Three different types of at-
tackers are typically considered [10]:

• In the prosecutor attacker model it is as-
sumed that the adversary already knows 
that data about an individual I is con-
tained in the dataset. Consequently, the 
probability for correctly linking the in-
dividual with an entry from the sample 
is P(Linkage | Membership) = 1 / |S|.

• In the journalist attacker model it is 
 assumed that the adversary has no prior 
knowledge about membership. The 
probability that data about I is con-
tained in the sample is P(Member-
ship) = |S| / |P| and therefore the prob-
ability of a successful linkage attack is 
P(Membership) × P(Linkage | Member-
ship) = |S| / |P| × 1 / |S| = 1 / |P|.

• The basic assumptions of the marketer 
attacker model are that the adversary 
has no prior knowledge and that she 
aims at re-identifying a larger number 
of individuals (e.g. for marketing pur-
poses, hence the name). As a conse-
quence, the effort is only worth it if a 
significant fraction of records can be 
 re-identified. Therefore marketer risk 
can be expressed as an average of the 
 re-identification risks of all records [18].

4. Methods
4.1 Risk Models

Protecting a dataset against prosecutor at-
tacks will also protect the dataset against 
journalist attacks. Moreover, protecting a 
dataset against journalist attacks will also 

protect the dataset from marketer attacks 
[10]. The most well-known privacy model, 
k-anonymity, controls the sizes of groups in 
the sample and therefore focuses on pro-
tecting datasets from prosecutor attacks 
[13]. However, k-anonymity is very strict 
and there is a potential to significantly im-
prove the quality of de-identified data by 
considering less powerful adversaries and 
the relationships between the sample and 
the attacker’s background knowledge.

The general principles underlying the 
models considered in this article are illus-
trated in ▶ Figure 3. As can be seen, all 
models focus on the distribution of the 
sizes of groups in the dataset. In each histo-
gram, the x-axis represents the sizes (start-
ing from 1, increasing from left to right) 
and the height of a bar represents the 
number of groups of the according size. In-
formation about the sample (right side) is 
known, information about the population 
(left side) must be estimated from the 
sample using a known population size. The 
k-anonymity model focuses on the dis-
tribution of group sizes in the sample as it 
requires that no groups exist which contain 
less than k records.

k-Map is a privacy model which also 
controls the sizes of the groups of indistin-
guishable records. However, in contrast to 
k-anonymity, the risk threshold is not en-
forced on the groups in the sample but on 
the groups in the population table [17]. 
The model requires the data custodian to 
have access to a database with detailed data 

Figure 3 Principles underlying the risk models considered in this article.
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about the population, which is not a real-
istic assumption in practice. A solution to 
this problem was originally proposed in 
[19] and adopted for biomedical data in 
[20]. As is sketched in ▶ Figure 3, the basic 
idea is to assume that group sizes are fol-
lowing a zero-truncated Poisson distribu-
tion and to use hypothesis testing to find a 
parameter k’ ≤ k, such that a dataset which 
is transformed to fulfill k’ -anonymity is 
likely to fulfill k-map. For example, the 
probability that a randomly sampled subset 
of 30,000 records about individuals from 
the US which fulfills 2-anonymity also ful-
fills 5-map is at least 99 %. As this model 
focuses on the size of groups in the popu-
lation, it can be used to protect datasets 
from journalist attacks. The implemen-
tation is based on k-anonymity, and it 
therefore also offers weak protection 
against prosecutor attacks.

Measures against marketer attacks can 
be implemented by enforcing a limit on the 
average re-identification risk, which can be 
measured with the average group size in 
the sample. As a dataset with an average 
risk below a given threshold may still con-
tain some records with rather high risks, 
the concept of (k’,k)-strict-average risk has 
been proposed. It focuses on the distribu-
tion of group sizes in the sample (see 
▶ Figure 3) and combines a threshold on 
the average re-identification risk with 
k-anonymity. For example, (5,3)-strict-
average risk requires an average group size 

of 5 and a minimal group size of 3. This 
model offers protection against marketer 
attacks and weak protection against pros-
ecutor and journalist attacks.

Finally, super-population models esti-
mate the distribution of group sizes in the 
population from the distribution of group 
sizes in the sample (see ▶ Figure 3). As a 
basis, a distribution is used which is flexible 
enough to represent various populations. 
The parameters of this distribution are 
then estimated from properties of the 
sample [21–23]. Dankar et al. have experi-
mentally validated a large number of such 
models with clinical datasets [24]. Their re-
sults show that the model by Hoshino [21], 
which uses Pitman’s sampling formula as 
the underlying distribution, is the most ac-
curate method for common data sharing 
scenarios. One important application of 
such models is to calculate the number of 
records from the sample that are unique 
within the population, as this measure  
is well suited for estimating marketer 
 re-identification risks [24]. We call the 
 according privacy model p-uniqueness. 
When the threshold on the number of 
population uniques is set to zero (i.e. 
0-uniqueness), the model also offers weak 
protection against journalist attacks.

▶ Table 1 shows an overview of all 
methods that we have implemented as part 
of the work described in this article. 
 Formal definitions can be found online in 
the supplementary ▶ Appendix. It also 

shows which degree of protection the 
 models offer against different types of 
 attackers when they are used with typical 
parameters.

4.2 Implementation

We have integrated the above risk and 
 privacy models into the open source data 
anonymization tool ARX [25]. From a set 
of possible de-identification policies which 
can be used to transform the input dataset, 
the tool automatically selects a solution 
which fulfills the predefined privacy 
requirements while minimizing the loss of 
information. For measuring data quality 
we used the method by Iyengar which cal-
culates data precision by determining the 
extent to which the domain of an attribute 
is covered by the transformed values [26]. 
A formal definition can be found online in 
the supplementary ▶ Appendix. A value of 
100 % represents the original input dataset 
and a value of 0 % represents a dataset from 
which all information has been removed.

As is shown in ▶ Figure 4, each de-
identification policy defines a generaliz-
ation scheme, which is constructed from 
the user-defined generalization hierarchies 
(see ▶ Figure 1). The application of a gen-
eralization scheme is followed by record 
suppression. In the example, the privacy 
requirement is 2-anonymity which defines 
an upper bound of 50 % on prosecutor re-
identification risks. The output dataset has 
a quality of 75 %, which means that 25 % of 
the information from the input dataset has 
been lost as a result of the transformation.

We note that when using ‘traditional’ 
de-identification methods it is easy to de-
cide which records need to be suppressed, 
because the decision can be made by separ-
ately analyzing the individual groups. For 
example, when implementing k-anonymity 
all groups need to be suppressed which 
contain less than k records. In contrast, 
when using risk models for data de-identi-
fication this decision must be based on a 
holistic view of the whole generalized data-
set. For example, it is difficult to decide 
which groups of records need to be sup-
pressed to achieve a predefined average 
group size.

To solve this problem, we have de-
signed and implemented a generic process 

Table 1  
Overview of risk mod-
els and the protection 
provided against dif-
ferent types of attack-
ers.

Risk Model

k-Anonymity

k-Map

(k’,k)-Strict-average risk

p-Uniqueness (Hoshino)

Degree of Protection Against Attacker

Prosecutor

High

Low

Low

-

Journalist

High

High

Low

Low

Marketer

High

High

High

High

Figure 4  
Example of applying a 
de-identification pol-
icy.
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for risk-based data de-identification 
which is shown in ▶ Figure 5. After a 
given generalization scheme has been 
used to transform the input dataset we 
first calculate the risk according to the 
given model. If it is not below the given 
threshold, our method suppresses the 
group of records with the least informa-
tion content. This group is determined 
using the model by Iyengar which is also 
used by the tool to select the optimal sol-
ution [26]. Suppressing a group changes 
the distribution of group sizes indicated in 
▶ Figure 3. Next, the risk model is evalu-
ated again, this time for the modified out-
put dataset. This process is repeated until 
the risk is acceptable. Finally, the algo-
rithm computes the total loss of informa-
tion for the current de-identification pol-
icy and proceeds with the next solution 
candidate. When all policies have been 
evaluated it returns the solution with the 
highest data quality.

The described process is computation-
ally complex, as it needs to evaluate 
multiple policies to determine a good so -
lution for a given input dataset in terms of 
output quality. Even evaluating a single 
policy involves multiple evaluations of the 
risk model. We have implemented two im-
portant optimizations to make this process 
feasible. First, we used a pruning strategy 
proposed by Bayardo et al. to exclude pol-
icies from the search process by exploiting 
the fact that lower bounds on the quality of 
the result of a generalization scheme can be 
calculated without applying the scheme to 
the input dataset [27]. Second, we devel-
oped highly optimized implementations of 
the risk models. This is especially impor-
tant for the p-uniqueness model by Hoshi-
no, because evaluating it requires to 
 numerically solve a bivariate non-linear 
equation system [21].

5. Experimental Evaluation
5.1 Setup

In our experiments, we used five different 
datasets: 1) an excerpt of 30,162 records 
from the 1994 US census database 
(ADULT), 2) a dataset covering 63,441 in-
dividuals from the 1998 KDD data mining 
competition (CUP), 3) NHTSA crash stat-

istics containing 100,937 cases from their 
Fatality Analysis Reporting System (FARS), 
4) 539,253 responses from the American 
Time Use Survey (ATUS) and, 5) 1,193,504 
records from the Integrated Health Inter-
view Series (IHIS). The 1994 census dataset 
serves as a de-facto standard for the evalu-
ation of de-identification algorithms. All 
datasets included between eight and nine 
quasi-identifiers, such as demographics 
(e.g., age, marital status, sex), information 
about insurance coverage, social parame-
ters (e.g., education) and health parameters 
(e.g., weight, health problems). For more 
information about the datasets the reader is 
referred to [28].

As a model for managing prosecutor re-
identification risks, we used k-anonymity 
with a risk threshold of 20 % which is a 
common parameter for biomedical data 
[20, 29]. As a model for managing journa -
list risks while also providing weak protec-
tion against prosecutor attacks, we used 
k-map with a risk threshold of 20 % and a 
significance level of α = 0.1. These values 
have been recommended in the literature 
[20]. As a model for managing marketer re-
identification risks while also providing 
weak protection against prosecutor and 
journalist attacks, we used (k’,k)-strict-
average risk with thresholds of 50 % and 
33 % for the maximal risk and a threshold 
of 20 % for the average risk. These values 
have been recommended for health data 
[29]. To analyze how the improvements in 
data quality depend on the acceptable risk, 
we have also performed all experiments 
with twice as strict thresholds. As a model 
for managing marketer re-identification 
risks, we used p-uniqueness (Hoshino) 
with strict thresholds [24] on the propor-
tion of population uniques of between 
10–6 % and 1 %.

Where applicable, we also considered 
the impact of different assumptions about 
how good the attacker’s background know-
ledge is. The quality of this knowledge 
 corresponds with the attacker’s ability to 
narrow down the set of individuals that 
may be represented in the dataset. There-
fore, we model this aspect by assuming dif-
ferent sizes of the underlying population. 
As the datasets are from the US, we chose 
the following populations with decreasing 
size: 1) all US citizens (318.9 million), 2) 
the population of the State of Texas (27.0 
million) and 3) the population of Texas’ 
largest city, Houston (2.2 million).

5.2 Results

▶ Table 2 and ▶ Table 3 show an overview 
of the data quality and residual risks 
 obtained when de-identifying the five 
 datasets with k-anonymity, k-map and 
(k’,k)-strict-average risk using the pre-
viously described parameters. k-Anonym-
ity provides the highest degree of protec-
tion and it therefore defines the baseline in 
terms of data quality.

With k-map, data quality could be im-
proved significantly while providing ident-
ical degrees of protection against journalist 
and marketer attacks. The decrease in in-
formation loss depended on the quality of 
the attacker’s background knowledge. For 
the ADULT dataset an improvement of 
5.4 % could be achieved with a risk thresh-
old of 20 % and an improvement of 10 % 
could be achieved with a threshold of 10 %. 
No instance of background knowledge 
considered in the experiments was suffi-
cient to significantly narrow down the set 
of individuals represented in this dataset. 
For the largest dataset, IHIS, an improve-
ment of up to 5.2 % could be achieved with 

Figure 5 Overview of our risk-based data de-identification process.
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a risk threshold of 20 % and an improve-
ment of up to 7.4 % could be achieved with 
a threshold of 10 %. However, when assum-
ing that the attacker is able to narrow down 
the individuals to the population of the city 
of Houston, no improvements could be 
measured. The degree of protection offered 
against prosecutor re-identification risks 
decreased with increasing data quality. For 
higher quality output data, residual pros-
ecutor risks were 50 %, which decreased to 
up to 10 % with increasing loss of informa-
tion.
Although (k’,k)-strict-average risk offers 
weaker protection than k-map, we could 
only measure few significant improve-
ments in data quality. A slight improve-
ment could be achieved in cases where the 
focus lies on protection against marketer 
attacks and where it must be assumed that 
the attacker possesses high quality back-
ground knowledge (e.g. (k’,k)-strict-aver-
age risk vs. k-map, Houston for IHIS). The 
residual risks measured for prosecutor at-
tacks are comparable to the risks obtained 

with k-map, but risks for successful jour-
nalist attacks are increased.

The models evaluated previously offer 
protection against all three types of attack-
ers, although to different degrees. With 
p-uniqueness protection can be focused on 
the marketer risk alone. ▶ Figure 6 shows 
risk-utility frontiers obtained by de-iden-
tifying the datasets using the Hoshino 
model. Risk-utility frontiers are plots of 
 re-identification risks versus data quality 
which illustrate the trade-offs a specific 
method provides between these two as-
pects [30]. Each point in such a plot repre-
sents a policy which offers an optimal 
trade-off. This means that risk cannot  
be reduced without reducing quality and 
that quality cannot be improved without 
increasing risk. As a baseline we use 2-ano-
nymity (50 % risk threshold), which results 
in datasets without any unique records.

It can be seen that, compared to k-ano-
nymity, significant improvements in data 
quality could be achieved. Using a risk 
threshold of 1 %, which is still rather strict, 

quality improved by 4 % – 17 % compared to 
2-anonymity, by 7 % – 20 % compared to the 
baseline from ▶ Table 2 and by 9 % – 24 % 
compared to the baseline from ▶ Table 3. 
Even with stricter thresholds for re-identi-
fication risks significant improvements 
could be achieved. As expected, data 
quality decreased when more accurate 
background knowledge was assumed to be 
available to the attacker. The data also 
shows some irregularities. For example, at 
some measurement points data quality for 
the ATUS dataset was higher when more 
accurate background knowledge was con-
sidered. The reason for this behavior is  
that it is not always possible to automati-
cally solve the equation system used by the 
Hoshino model [21]. However, this is a rare 
event which does not have any privacy im-
plications but only leads to output data 
with non-optimal quality. The vertical lines 
in ▶ Figure 6 indicate the point at which 
the fraction of population uniques drops to 
zero and the model thus offers weak pro-
tection against journalist attacks (50 % 

Table 2 Data quality and residual risks when de-identifying data using k-anonymity, k-map and (k’,k)-strict-average risk with a threshold of 20 %. Primary 
risk thresholds are highlighted. Risk thresholds in parenthesis are not defined by the user but result from the de-identification process.

Privacy Model

k-Anonymity

k-Map (Houston)

k-Map (Texas)

k-Map (USA)

(k’,k)-Strict-average risk

(k’,k)-Strict-average risk

Risk Thresholds

Prosecutor

20 %

(20 %-50 %)

(33 %-50 %)

(50 %)

33 %

50 %

Journalist

20 %

20 %

20 %

20 %

33 %

50 %

Marketer

20 %

20 %

20 %

20 %

20 %

20 %

Data Quality

ADULT

77.9 %

83.3 %

83.3 %

83.3 %

80.8 %

83.8 %

CUP

86.0 %

88.6 %

88.6 %

88.6 %

87.4 %

88.6 %

FARS

84.7 %

86.8 %

88.7 %

88.7 %

86.8 %

88.7 %

ATUS

91.3 %

92.0 %

94.5 %

94.5 %

92.8 %

94.5 %

IHIS

87.1 %

87.1 %

90.0 %

92.3 %

90.0 %

92.3 %

Table 3 Data quality and residual risks when de-identifying data using k-anonymity, k-map and (k’,k)-strict-average risk with a threshold of 10 %. Primary 
risk thresholds are highlighted. Risk thresholds in parenthesis are not defined by the user but result from the de-identification process.

Privacy Model

k-Anonymity

k-Map (Houston)

k-Map (Texas)

k-Map (USA)

(k’,k)-Strict-average risk

(k’,k)-Strict-average risk

Risk Thresholds

Prosecutor

10 %

(10 %-50 %)

(33 %-50 %)

(50 %)

20 %

33 %

Journalist

10 %

10 %

10 %

10 %

20 %

33 %

Marketer

10 %

10 %

10 %

10 %

10 %

10 %

Data Quality

ADULT

73.8 %

83.8 %

83.8 %

83.8 %

77.9 %

80.8 %

CUP

82.4 %

87.4 %

88.6 %

88.6 %

86.0 %

87.4 %

FARS

81.8 %

86.8 %

88.7 %

88.7 %

84.7 %

86.8 %

ATUS

89.0 %

90.7 %

94.5 %

94.5 %

91.3 %

92.8 %

IHIS

84.9 %

84.9 %

90.0 %

92.3 %

87.1 %

90.0 %
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risk). In some cases small improvements in 
data quality could also be achieved with 
these strict thresholds. For example, 
 de-identifying the CUP dataset with a 
threshold of 10–5 improved quality by 4 % 
compared to k-anomymity, k-map and 
(k’,k)-strict-average risk.

6. Discussion

In this article, we have presented a generic 
method for automatically de-identifying 
biomedical data with a broad spectrum of 
models for re-identification risks. We have 
implemented several such models and we 
have analyzed the degrees of protection 
they offer against different types of re-
identification attacks. We have further per-
formed extensive experiments which show 
the improvements in data quality that can 
be achieved by implementing a risk-based 
approach to data de-identification. Com-
pared to k-anonymity, which is the model 
that provides the highest degree of protec-
tion, the loss of information content could 
be reduced by up to 10 % when protecting 
datasets against strong adversaries and by 
up to 24 % when protecting datasets against 
weaker adversaries.

The protection of personal health data 
against privacy threats is a challenging task 
involving multiple trade-offs. As men-
tioned previously, privacy risks can never 
be reduced to completely zero [11]. There-

fore, data controllers must employ multiple 
layers of safeguards. A typical example are 
data use agreements, which are contracts 
that hold data recipients responsible to 
comply with relevant terms, conditions  
and regulations. Moreover, multiple fine-
grained levels of access to sensitive data 
should be implemented and data access 
committees should be involved [31]. By 
controlling the context in which sensitive 
data is disclosed, reasonable assumptions 
can be made about possible attacks. In 
other words, depending on which addi-
tional safeguards are implemented, differ-
ent options for data de-identification can 
be used [32]. For example, the HIPAA Pri-
vacy Rule permits the use of less strict 
methods of data de-identification if data 
use agreements are signed [14]. Our results 
can be used as a guideline for tailoring  
de-identification processes to a specific 
context in order to maximize data quality.

The risk estimates used in this article 
are based on worst-case assumptions [10] 
and there is evidence that re-identification 
risks are generally overestimated [33]. 
While the k-anonymity model has been 
recommended for public data disclo- 
sure [20], methods such as k-map and 
(k’,k)-strict-average risk have been recom-
mended for non-public data sharing [11, 
29]. Super-population models are used by 
statistical agencies for the preparation of 
public use files [19] and population stat-
istics have been used for defining the pri-

vacy requirements underlying the Safe 
Harbor method [34]. Models considering 
the relationships between a dataset and the 
underlying population can also be impor-
tant for de-identifying data from small geo-
graphic regions, where datasets are often 
too sparse to be de-identified with strict 
models [35].

The basic steps of our risk-based de-
identification algorithm (see Section 4.2) 
are similar to process steps suggested in 
other articles [24, 36]. However, previous 
work focused on abstract workflows for 
performing manual risk analyses. In 
contrast, we have presented the first soft-
ware implementation which enables the 
use of risk models for automatically de-
identifying data. Other de-identification 
tools, in particular sdcMicro [37] and 
μ-Argus [38], also implement models for 
estimating re-identification risks. However, 
in contrast to our work, these tools imple-
ment the models for performing accom-
panying risk analyses only and they do not 
provide means to directly use them for data 
de-identification. It has been shown that 
the model by Hoshino, which we have im-
plemented into ARX, significantly outper-
forms the risk estimator implemented in 
μ-Argus [24].

All risk models described in this article 
have been recommended for de-identifying 
biomedical data [11, 29, 24, 20]. The trans-
formation method used by our implemen-
tation produces datasets which are well 

Figure 6  
Semi-log plots com-
paring data utility 
measured for differ-
ent de-identification 
data with p-unique-
ness (Hoshino) and 
2-anonymity. The ver-
tical lines indicate 
the point at which 
the fraction of popu-
lation uniques drops 
to zero.
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suited for analyses by epidemiologists and 
which is intuitive enough to enable non-IT 
experts to configure the de-identification 
process [39]. It has been demonstrated that 
modern analyses used in biomedical re-
search, such as phenome-wide association 
studies, can effectively be performed with 
de-identified data [40]. The ARX data an-
onymization tool has been designed spe-
cifically for applications in the biomedical 
domain. While data can (and sometimes 
must) be protected from threats which go 
beyond re-identification (e.g. probabilistic 
inference of sensitive attribute values [41]), 
it is generally accepted that data de-identi-
fication is of central relevance [42]. How-
ever, the ARX system implements a wide 
variety of further privacy models and our 
implementation therefore supports com-
bining risk-based data de-identification 
with other methods of data anonymization.

Our results show that the quality of 
 anonymized data can significantly be im-
proved by considering the context of data 
sharing for choosing appropriate privacy 
models. However, there are additional ways 
with which the quality of data can be opti-
mized. First, further methods have been 
proposed for transforming data. The 
amount of information removed from a 
dataset can be reduced by not requiring all 
values of an attribute to be transformed to 
the same generalization level [43]. The 
most important methods in this context are 
local recoding, e.g. [44], and subtree gen-
eralization, which has been used to con-
struct risk-utility frontiers for biomedical 
data in [16]. However, results obtained 
with these models are complicated to ana-
lyze [45]. Microaggregation is a pertubative 
transformation method which is specifi-
cally well suited for continuous variables, 
e.g. [43, 45]. However, it has been argued 
that pertubative methods cannot be used in 
biomedical research [46]. ARX supports 
local recoding as well as microaggregation. 
Second, it is also important to choose an 
appropriate model for measuring data 
quality. KL-Divergence [41] and Non-Uni-
form Entropy [39] are two important 
methods which have also been recom-
mended for biomedical research [11, 16]. 
Both are implemented in ARX. We have 
performed our experiments with these 
models as well and we have measured im-

provements comparable to the numbers 
presented in Section 5. Finally, inherently 
different approaches to privacy-preserving 
data publishing can be used. With the Dif-
ferential Privacy [47] method, privacy 
models are not applied to the data which is 
being released but to the mechanism with 
which it is being processed. The approach 
provides stronger privacy guarantees while 
requiring less assumptions to be made 
about likely attacks. However, Differential 
Privacy usually involves significant trade-
offs in terms of supported workflows and it 
has been argued that it is not well suited for 
the biomedical domain due to its pertu-
bative nature [46]. ARX also implements a 
differentially private data release mechan-
ism.

7. Conclusion

The aim of this article was not to propose 
new privacy models, but to present a 
 generic method that can be used to tailor 
de-identification processes to a concrete 
context. We have shown that our approach 
enables significant improvements in terms 
of data quality. The preconception that 
 de-identification generally results in an 
 unacceptable loss of information – and a 
lack of publicly available tools which dem-
onstrate the opposite – is a major barrier 
for its broader adoption [48]. As a conse-
quence, our open source implementation 
of the methods presented in this article is a 
valuable resource for fostering the use of 
de-identification methods in biomedical 
research.
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