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In this special edition of AIMS Genetics, we highlight the use of the genetically amenable vinegar 
fly, Drosophila melanogaster, in modeling cancer. Drosophila has been an important model organism 
for over 100 years, and has made major contributions to the discipline of cell and developmental 
biology by the discovery of new genes and signaling pathways. Furthermore, research using 
Drosophila has provided seminal insights into gene function, which are relevant to human health. 
After the sequencing of the Drosophila and human genomes, it has become apparent that ~ 70% of 
human disease genes are conserved in Drosophila [1]. In recent years, Drosophila is being used more 
frequently as a model for many human diseases, including cancer [2-6]. Drosophila presents many 
advantages as an in vivo model system for the study of cellular processes that contribute to human 
cancer, including the evolutionary conservation of Drosophila genes with mammalian genes, its lower 
genetic redundancy, genetic manipulability, short life cycle, easy maintenance and low research costs. 
In regard to the hallmarks of human cancer [7], Drosophila presents a suitable model for the majority 
of these cancer hallmarks, including continued cell proliferation, resistance to apoptosis, impaired 
differentiation, altered metabolism, defective innate immune response, altered cell morphology and 
invasion/metastasis [2,6,8-12]. Additionally, aberrant asymmetric cell division and differentiation of 
stem cells are contributing factors in at least some human cancers [13,14,15]. In this regard, 
Drosophila presents several systems where the interaction of genetically altered stem cells with their 
niche in tumorigenesis can be studied [11,16-24]. In this special edition, we present eight reviews that 
highlight the various ways in which Drosophila has been used to understand the hallmarks of cancer. 
In particular, these reviews cover how Drosophila models have revealed the involvements of signaling 
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pathways in tissue growth and tumorigenesis [25,26,27], how altered cell polarity or differentiation 
contributes to stem cell induced tumorigenesis [28,29], the understanding of invasion/metastasis 
mechanisms [30], cell-competition and non-cell automomous aspects of tumorigenesis [31] and the 
impact of chromosome instability on tumor progression [32]. Moreover, these reviews highlight 
different Drosophila systems that are used to model cancer; epithelial tissues [25,26,27,30,31,32], 
neural stem cells [28] and germ-line stem cells [29]. 

Signaling pathway perturbations have a powerful impact on the process of tumorigenesis because 
of the multiple targets that they control, however whether they promote or inhibit tumor growth or 
invasion/metastasis can be context dependent. The Notch signaling pathway, which was discovered via 
Drosophila genetics studies ~ 100 years ago, is a cell-cell interaction signaling pathway involved in 
tissue growth control and cell fate decisions and plays a context-dependent role in tumorigenesis 
[33,34]. In this special issue, Antonio Boanza and colleague highlight the function of Notch signaling 
during Drosophila development and how its deregulation leads to tumorigenesis [27]. 

The Hippo negative growth control pathway is a conserved signaling pathway, initially 
discovered in Drosophila [35]. The deactivation of this pathway affects the expression of cell growth, 
proliferation and survival genes There is accumulating evidence that deregulation of the Hippo 
pathway is a major player in many human cancers [36,37]. Recently, Drosophila studies have revealed 
cross-talk between the Hippo pathway and the Jun-kinase (JNK) stress response pathway, which 
shows context dependent effects in human cancer [38]. In this special edition, Xianjue Ma reviews the 
importance of the Hippo and JNK pathways, and their interactions in tissue growth and 
invasion/metastasis in Drosophila models of tumorigenesis [26]. 

The transcription factor and oncogene, Myc, is a central player in tissue growth control that is 
controlled by the Hippo and Notch pathways, as well as several other signaling pathways in 
Drosophila [39,40,41]. In this special edition, Leonie Quinn and colleagues review how research in 
Drosophila has provided insights into the regulation and function of Myc and how these studies relate 
to the role of Myc in human cancer [25]. Myc is also a key factor in cell competition, which is a cell 
surveillance mechanism that enables the detection of less-fit cells. Cell competition was initially 
discovered in Drosophila, but also has relevance to mammalian tissue homeostasis and cancer [39,41,42,43]. 
The removal of unfit cells involves interaction of the Drosophila macrophage-like cells (hemocytes), 
which are the cellular component of the innate immune system [8,9]. Studies in Drosophila have also 
revealed that in the repair of damaged tissue, dying cells induce compensatory proliferation of 
surrounding cells, which is also likely to be relevant in the response of human tumors to  
chemotherapy [44,45]. In this special edition, Tin Tin Su reviews how the analysis of cell-cell 
interactions and whole organism responses to tissue damage or genetically aberrant cells in Drosophila 
has contributed to our understanding of the interaction of a tumor with its microenvironment in human 
cancer [31]. Since the tumor microenvironment is emerging as a major factor in the aetiology of 
mammalian cancer progression [7,46-49], these studies in Drosophila provide new insights into the 
understanding of human cancer. 

Stem cells play an important role in several human cancers, where altered stem cell division 
regulation and/or differentiation programs contribute to tumor overgrowth [13,14,15]. Two reviews in 
this special issue cover the important topic of stem cells in cancer in different Drosophila  
tissues [28,29]. Louise Cheng and colleagues review the literature on Drosophila neural stem cells and 
how this work is providing insight into human brain cancer [28]. Greg Somers and colleague review 
the germ-line stem cells of the Drosophila testes and ovaries and how this research is contributing to 
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our understanding of stem cell—somatic cell niche interactions that are relevant to human cancer [29]. 
These reviews highlight the importance of epigenetic regulation for stem cell maintenance, cell 
polarity and adhesion in the regulation of asymmetric cell division of stem cells, and the activation of 
various signaling pathways and transcriptional programs for the correct differentiation of stem cell 
progeny. 

In human cancer, invasion/metastasis is estimated to result in 90% of cancer morbidity [7]; and 
therefore, understanding the mechanisms that promote invasive/metastatic behaviour are of great 
importance clinically. The epithelial to mesenchymal transition (EMT) is a key event necessary for an 
epithelial cell to break adhesion with the other epithelial cells and to become migratory [50]. Changes in 
apico-basal cell polarity and cell morphology are central to this process [51,52,53]. In this special 
edition, Michael Murray describes the different Drosophila systems used to study EMT and cell 
invasion/metastasis and how this research has informed human cancer biology [30]. This review 
highlights the importance of cell polarity, cell adhesion, actin cytoskeletal regulators and signaling 
pathways in promoting EMT and invasive behaviour and reveals novel molecules that might provide 
new therapeutic opportunities for cancer therapy. 

Finally in this review series, Stephen Gregory and colleagues cover the contribution of genomic 
instability, particularly chromosome instability (CIN), to tumorigenesis [32]. CIN is a hallmark of 
many human cancers, which is driven in part by loss of the DNA damage checkpoint tumor suppressor 
protein, p53, which is mutated in ~ 50% of all human cancer [7,54]. However, CIN is also triggered by 
mutation of other cell cycle checkpoint genes, such as those involved in the spindle assembly 
checkpoint, which is a surveillance mechanism ensuring correct connection of chromosome 
kinetochores to the mitotic spindle microtubules, that occurs before the metaphase to anaphase 
transition is initiated [55]. Disruptions to the centrosome (microtubule organizing center (MTOC)), 
required for correct spindle formation, is also linked to CIN [56]. Stephen Gregory and colleagues 
review various Drosophila systems used to study CIN in tumorigenesis and emphasise how 
Drosophila models are contributing to the discovery of new avenues to specifically target cancer cells 
that exhibit CIN to undergo cell death [32].  

Overall this review series provides a snapshot of the power of the Drosophila model as a 
genetically amenable in vivo system to study the hallmarks of cancer and reveal novel genes that have 
therapeutic potential for human cancer. Not specifically covered in this review series are some of the 
emerging areas in the Drosophila and mammalian cancer research fields, that of cell metabolism and 
autophagy in cancer development [39,57-64], and epigenetic regulation of tumorigenesis, including 
chromatin remodeling and histone modification [65,66,67]. Furthermore, the use of Drosophila as a 
platform for anti-cancer drug discovery is an emerging area that is likely to make a major impact 
clinically [62,68-76]. Undoubtedly, these new areas, as well as further research into the topics covered 
in this review series, will provide further advances in the application of Drosophila models towards the 
understanding and treatment of human cancer.  
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