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Introduction
The history of nuclear medicine is rich with contributions 
from gifted scientists across different disciplines in 
physics, chemistry, engineering, and medicine. The 
multidisciplinary nature of nuclear medicine makes it 
difficult for medical historians to determine the birthdate 
of nuclear medicine. This can probably be best placed 
between the discovery of artificial radioactivity in 1934 and 
the production of radionuclides by Oak Ridge National 
Laboratory for medicine related use, in 1946.[1] Nuclear 
medicine imaging technologies are viewed in the 
context of anatomy, physiology and molecular level to 
diagnosis of disease, assessment of response to treatment 
and determination of drug’s distribution throughout 
the body.[2-4] The concept of emission and transmission 
tomography, later developed into a single photon emission 
computed tomography (SPECT), was introduced by David 
E. Kuhl and Roy Edwards in the late 1950s.[1]

Single photon emission computer tomography is a 
computerized tree-dimensional image processing 
for demonstration of acquisitioned image by gamma 
camera.[5] The function of the scintillation crystals in the 
nuclear medicine imaging systems is production visible 
light from hitting high energy γ-rays.[6] Many physical 
factors degrade SPECT images, qualitatively and/or 
quantitatively. Researching on quality improvement is 
proceeding on the gamma camera and SPECT system for 
assessment the quality and quantity of images.[7]

Growing interest in the development of new scintillator 
materials is pushed by increasing the number of 
medical, industrial and scientific application. [8] 
Detectors are the heart of a SPECT system and are 
responsible for collecting the high-energy photons 
emitted by the patient, estimating the photon energy 
and location of interaction, and generating count data 
for subsequent image reconstruction.[9] A scintillation 
crystal with high luminous efficiency, short decay time, 
low cost, high density, short radiation length, good 
spectral match to photodetectors and without afterglow 
is more favorable.[9-11]

The luminous efficiency can reduce the radiation absorbed 
dose to patients by decreasing radiopharmaceutical 
injection dosage as concerns about patient safety. 
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Short decay time is important for special resolution 
and photon detection. The afterglow is also a critical 
parameter and is often induced by some traps from 
crystal detects.[6,12] Afterglow in halides is believed to be 
intrinsic and correlated to certain lattice defects. Bismuth 
germinate (BGO) and cadmium tungstate crystals are 
examples of low after glow scintillation materials. 
Despite the acknowledge advantages of the CsI: Tl in 
many scintillator applications, a characteristic property 
that undermines its use in high-speed radiographic 
and radionuclide imaging is the presence of a strong 
afterglow component in its scintillation decay. This 
causes pulse pileup in high count rate applications, 
reduced energy resolution in radionuclide imaging, 
and reconstruction artifacts in computed tomography 
applications.[13] Materials with high atomic numbers and 
high density are important for detector efficiency. The 
materials shown in Table 1 have comparable effective 
densities. Both energy resolution and spatial resolution 
depend on the size of the signal generated with each 
detected event.[14,15] Studies continue to get good crystals 
with different materials for obtaining of an image with 
the best quality.

Scintillation Crystal Materials
Research and development of new scintillator materials 
are mainly triggered by the growing needs of modern 
medical imaging and high energy physics.[16] The first 
and most common crystal which was introduced in 1948 
was thallium activated sodium iodide (NaI: Tl).[17] NaI: Tl 
is a crystal with reasonable price, a proper luminance 
efficiency and an acceptable energy range, which it 
makes a common crystal for use in most nuclear medicine 
imaging equipment. Studies continue to get a good image 
quality for an accurate diagnosis.[18] NaI: Tl properties 
include: The density of 3.47 g/cm3, a decay time of 230 
ns and an energy resolution of 7.2 [Table 1].

Derenzo et al. (1990) compared NaI: Tl and BGO [Table 1] 
and found that later is more sensitive mainly due to 
its higher density. BGO with a density of 7.13 g/cm3, 
proper absorption of γ-rays, decay time of 300 ns and 
an energy resolution of 12 was proposed as a proper 
candidate.[19,20] Chewpraditkul et al. (2009) compared 
voltage of 662 kilo electron volte in terms of energy 

resolution in lutetium-yttrium oxyorthosilicate, cesium 
activated yttrium aluminum garnet (YAG: Ce) and 
lutetium aluminum garnet activated by cerium (chemical 
formula Lu3Al5O12), (LuAG: Ce). YAG: Ce is a crystal’s 
material with high-speed oxidation and its effects on 
atomic number and density. YAG: Ce has a density 
4.55 g/cm3, decay time of 70 ns and energy resolution 
7.2.[16,21] LuAG: Ce has energy resolution of 6.7 and 70 ns 
decay time is better than BGO.[22] As well as LuAG: Ce 
has better detection rate than YAG: Ce because of higher 
density (6.76 g/cm3) and atomic number (58.9).[16]

Another crystal is cesium activated yttrium aluminum 
YAP: Ce has high density of 5.37 g/cm3 and decay time of 
25 ns is a good time. Energy resolution (6.7) YAP crystal 
is better than YAG.[23] Figure 1 shows a diagram of YAG 
energy resolution.

Crystal, Mixed Rare-Earth Silicate
These are two different types of new crystals with suitable 
characteristics in nuclear medicine; CRY018 and CRY019. 
CRY018 crystal has a density of 4.5 g/cm3, decay time 
of 45 ns and detection of 425 nm wavelength. CRY018 
scintillation detectors are intended and preferred for use 
in electron microscopy, β- and X-ray counting, as well as 
for electron and X-ray imaging screens.[24] CRY019 crystal 
has density of 7.4 g/cm3, 46 ns decay time and detection 
of 4.2 nm wavelength and preferably used for γ-ray 
detectors (positron emission tomography and SPECT 
system) and high spatial resolution imaging screens for 
X-ray, γ- and β-rays.[25]

Table 1: Comparison of the characteristics of nuclear medicine used ‑ detectors in different case of studies
NaI:Tl BGO YAG:Ce YAP:Ce CRY019 LuAG:Ce CRY018 CZT LaBr3

Density (g/cm3) 3.67 7.13 4.55 5.37 7.4 6.76 4.50 5.78 5.08
Light output (%NaI:Tl) 100 15-20 40 60 40-75 20 80 - 160
Decay time (ns) 230 300 70 25 46 70 45 1 26
Energy resolution (%at661 kev) 7.2 12 7.2 6.7 8.5 6.7 7 0.5 2.7
NaI:TI: Thallium-activated sodium iodide; BGO: Bismuth germinate; YAG:Ce: Cesium activated yttrium aluminum garnet; LuAG:Ce: Lutetium aluminum garnet activated by cerium; 
CZT: Cadmium zinc telluride; LaBr3: Lanthanum bromide; ns: Nano second

Figure 1: 99mTc spectrum from cesium activated yttrium aluminum 
garnet detector[16]
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Development of Crystal
Mirela angela et al. (2011) evaluated cerium-activated 
lanthanum bromide (LaBr3) and LaCl3 as new nuclear 
medicine detectors, in terms of energy resolution, 
processing speed of light (decay time), the high 
temperature stability, high γ-ray detection efficiency 
and crystal size. The LaBr3 was used in in vivo for 
administration of I-131 in the thyroid to obtain 
acceptable results and consequently was enunciated 
as appropriate detector. The properties that make 
the LaBr3:Ce scintillator detector attractive for 
different applications based on γ-ray spectrometry 
are very good energy resolution, very fast light output 
decay, enabling high count rate applications, high 
temperature stability, high gamma detection efficiency, 
operation at room temperature, promising technology 
for manufacturing crystal at larger sizes.[26] LaBr3 is 
good a crystal material and has an excellent energy 
resolution and short decay time (16 ns) and the best 
gamma radiation detection rate. The crystal shows 
excellent energy resolution values good radiation 
absorption properties and speed.[22,27-30] Figure 2 shows 
a comparison of LaBr3 and NaI: Tl.

The most recent introduction crystal is cadmium 
zinc telluride (CZT) with the ability in different 
energies X-ray photon detection.[31,32] CZT is grown as 
a single crystal at a temperature of around 110°C in 
a hermetically sealed container to prevent chemical 
contamination. High effective atomic number (Zeff ~50) 
gives it high stopping power for typical energies of 
interest in SPECT. The spatial resolution of today’s 
CZT detectors is 2.5 mm independent of energy more 
better than the 4.0 mm typically achieved with NaI at 
99mTc energies (140 keV), and much better again than 
the resolution obtained with 201Tl (5–6 mm). One of 
the most striking things about the CZT detector is its 
size. Specifically, in an Anger camera it is difficult to 
resolve the position of events beyond the center of 
the last (edge) PMT. This results in a significant dead 
space all around the detector being direct-conversion 
based, has no such dead space. CZT detectors have 
reached a level of maturity that permits their use in 

specific applications that take advantage of their unique 
properties: High spatial resolution, low dead space, and 
excellent energy resolution.[32,33]

Cadmium zinc telluride has relatively high density and 
atomic number that puts in suitable radiation energy 
range for diagnostic imaging. Other advantag of CZT are 
very low decay time.[3,33,34] In 2013 Jenny Oddstig studied 
CZT with NaI: Tl detector in the field of cardiac imaging 
using simulation system Simind and get suitable results 
and images.[35] Figure 3 shows a graph comparing the 
peak energy of NaI: Tl and CZT.

Conclusion
Single photon emission computed tomography 
detector has more important effect to get a good 
image. Utilization of a suitable detector is necessary 
in obtaining high-quality images for better diagnosis. 
Many crystals have been evaluated in preclinical 
studies, and some of them have advantage in 
comparison with others due to chemical structure 
characteristics. For example, BGO is a crystal with the 
highest density and YAP: Ce has high density, and 
decay time of 25 ns is a good time, expressed a suitable 
detector than YAG: Ce. CRY018 and CRY019 crystals 
have high density and suitable decay time, but they 
haven’t good energy resolution. Moreover, LaBr3 is 
one of the most excellent detectors in nuclear medicine, 
this detector has high energy resolution that good 
proportionality characteristic and also CZT is a detector 
with good density, high energy resolution and lowest 
decay time in comparison with other detectors. Thus, 
until now, collected data from studies demonstrated 
that CZT can be the best detector. Research and 
studies continue about advantages and disadvantages 
of detectors, and also the best application of them in 
diagnostic imaging in the future.

Figure 2: Illustration of Cs-137 spectrum from lanthanum bromide 
and NaI detector[7]

Figure 3: Illustration of 99mTc spectrum from cadmium zinc telluride 
and thallium activated sodium iodide detector[35]
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