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these medically refractory epilepsy cases, surgery has 
been established as an effective mode of cure. About 
30‑40% of patients who have undergone an adequate 
epilepsy surgery still continue to have seizures.[3] To 
investigate this therapy resistance we need to understand 
the process of epileptogenesis that leads to generation of 
hyperexcitable neuronal network.

Various animal models with brain dysfunctions are 
currently under investigation to get an insight into 
the processes that leads to epilepsy. Chronic models 
of epilepsy like, kindling where short electrical 
stimulations is applied to amygdala or hippocampus 
and in post‑status epilepsy model in which sustained 
electrical stimulus to hippocampus or amygdala leads 
to recurrent spontaneous seizures, are widely used to 
study temporal lobe epilepsy.[4‑6] Chronic epilepsy could 
also be induced in animals by chemical convulsants 
like glutamate analogue kainate or muscarinic receptor 
agonist pilocarpine.[5,6] Genetic animal models with 
spontaneous mutations as well as induced mutations 
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INTRoDUCTIoN

Epilepsy is defined as a state of recurrent unprovoked 
or spontaneous seizures. Clinical studies on epilepsy 
and use of anticonvulsants started in the 1800s, but 
the actual understanding of the state of epilepsy 
started with the advent of electroencephalogram in the 
1900s.[1] Electroencephalography (EEG) provided an 
understanding of electrical basis of sequence of events 
that leads to epileptic seizures, which helped in the 
development of new generation of anticonvulsants.[2] 
But there is significant number of epilepsy cases where 
treatment with antiepileptic drugs is not effective. In 

A B s T R A C T

Investigating the changes associated with the development of epileptic state in humans is complex and requires a multidisciplinary 
approach. Understanding the intricacies of medically intractable epilepsy still remains a challenge for neurosurgeons across 
the world. A significant number of patients who has undergone resective brain surgery for epilepsy still continue to have 
seizures. The reason behind this therapy resistance still eludes us. Thus to develop a cure for the difficult to treat epilepsy, we 
need to comprehensively study epileptogenesis. Although various animal models are developed but none of them replicate 
the pathological conditions in humans. So the ideal way to understand epileptogenecity is to examine the tissue resected for 
the treatment of intractable epilepsy. Advanced imaging and electrical localization procedures are utilized to establish the 
epileptogenic zone in epilepsy patients. Further molecular and cytological studies are required for the microscopic analysis of 
brain samples collected from the epileptogenic focus. As alterations in inhibitory as well as excitatory synaptic transmission 
are key features of epilepsy, understanding the regulation of neurotransmission in the resected surgery zone is of immense 
importance. Here we summarize various modalities of in vitro slice analysis from the resected brain specimen to understand 
the changes in GABAergic and glutamatergic synaptic transmission in epileptogenic zone. We also review evidence pertaining 
to the proposed role of nicotinic receptors in abnormal synaptic transmission which is one of the major causes of epileptiform 
activity. Elucidation of current concepts in regulation of synaptic transmission will help develop therapies for epilepsy cases 
that cannot me managed pharmacologically.
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are also used to study molecular mechanisms of 
epilepsy.[7,8] Although all these animal models play an 
important role in epilepsy research, but unfortunately 
none of them replicate the human conditions. 
Thus, we need an epilepsy model which is helpful in 
understanding the processes underlying epileptogenesis 
to develop new therapies.

In cases where epileptic seizures cannot be controlled 
with pharmacological management, also referred as 
drug‑resistant epilepsy (DRE), patients are recommended 
for epilepsy surgery.[8] The examination of resected 
brain specimen obtained from epilepsy surgery gives 
an opportunity to explain the abnormalities associated 
with DREs. Histopathological examination of the 
surgically resected specimen is helpful in understanding 
the phenotypic changes associated with epileptogenesis. 
Various neuropathological lesions have been demonstrated 
in chronic intractable epilepsy cases.[9] Magnetic resonance 
imaging (MRI), electroencephalography (EEG), 
video EEG, as well as functional imaging techniques 
like positron emission tomography (PET), and single 
photon emission tomography (SPECT) are utilized to 
locate the epileptogenic area. A non‑invasive protocol 
like magnetoencephalography (MEG) has been very 
useful for the localization of epileptogenic focus. The 
well‑established epileptogenic zones in the resected brain 
sample serves as an ideal model to study the mechanism of 
epileptogenesis. Quantification of abnormalities in these 
tissues based on various morphological, cellular/molecular, 
and electrical properties may define the extent of damage 
caused. These demonstrated properties may help resolve 
the issue of therapy resistance in intractable epilepsy 
cases. For control experiments normal brain samples are 
not available due to ethical reasons thus, non‑epileptic 
tissues like that from tumour or trauma is used. Moreover, 
brain specimens resected during tumor surgery not 
presenting with epilepsy or seizures, but well within the 
abnormal perimeter of surgical resection also serves as 
control.

AbNoRMAL SYNAPTIC TRANSMISSIoN 
LEADS To EPILEPTIFoRM ACTIVITY

In resting condition there is a high concentration of 
potassium inside the neurons and a high sodium ion 
concentration outside the cell creating a transmembrane 
potential of ‑60 mV.[10] During seizure this system 
goes awry leading to depolarization of neurons and 
excessive discharge of action potentials. One of the 
reasons behind this uncontrolled neuronal firing is the 
imbalance between excitatory and inhibitory synaptic 
transmission, which is a hallmark of epileptic seizures. 

Immunohistochemical analysis of brain samples using 
antibodies against markers that label glutamatergic and 
GABAergic synaptic terminals indicates modulation of 
synaptic transmission in epileptogenic zone.[11‑13] Similarly, 
gene expression studies on resected tissue revealed 
changes in the mRNA levels of various glutamate and 
GABA‑receptor subunits.[14] Modulation of glutamatergic 
and GABAergic synaptic transmission has been reported 
in resected surgery zone obtained from epilepsy cases.[15] 
Comparison of electrophysiological characteristics of 
neurons in maximally abnormal tissue with that in 
least abnormal tissue indicates significant alterations 
in synaptic current kinetics.[16,17] These changes in 
the cellular signaling properties may be responsible 
for generating epileptogenic focus. There are multiple 
mechanisms that cause disruption of processes that 
create a balance between glutamatergic and GABAergic 
transmission causing the neurons to discharge excessive 
action potential and uninhibited firing.[18] Examining 
the mechanisms that regulate the glutamatergic and 
GABAergic transmission at various levels is necessary 
to conceptualize epileptogenesis.

DYSFUNCTIoNAL gLUTAMATERgIC 
SYNAPTIC TRANSMISSIoN LEADS To 

SEIZURE gENERATIoN

Excitatory synaptic transmission mediated by glutamate 
which is released from pyramidal neurons leads to 
depolarization and excitation of target neurons through 
ionotropic receptors N‑methyl‑D‑aspartic acid (NMDA) 
receptor, α‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazole 
proprionic acid (AMPA) receptor, and kainic acid 
receptor. NMDA receptors, AMPA receptors, and 
kainic acid receptors have been localized in post‑mortem 
human brains.[19‑21] NMDA receptors which are 
tetramers composed of GluN1, GluN2A‑CluN2D, and 
GluN3A‑GluN3B[22] has been extensively studied for its 
role in epilepsy. Mutations in the gene encoding GluN2A 
have been identified in patients with idiopathic epilepsy[23] 
and haplotypes of gene encoding GluN1 have also been 
associated with epilepsy.[24] Decreased GluN2B expression 
in pyramidal neurons has been shown in TLE patients and 
upregulation of this receptor subunit was reported in the 
pyramidal neurons in hippocampal scelerosis.[12] NMDA 
receptor‑mediated excitatory postsynaptic potentials 
recorded from dentate granule cells in brain specimens 
obtained from epileptic patients had increased duration 
and amplitude.[25,26] NMDA channel opening was 
enhanced even in the dissociated dentate granule 
cells from human epileptic hippocampus.[27] Moreover, 
NMDA‑subtype glutamate receptor‑mediated excitatory 
postsynaptic current (EPSC) response is prolonged in 
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slice preparations of surgically resected tissues obtained 
from temporal lobe epilepsy patients.[28] Thus, abnormal 
regulation of NMDA receptor‑mediated glutamate 
receptor activity could be a major contributor for 
epileptogenesis. Further evidences indicate that NMDA 
receptors are involved in epileptogenesis and in epileptic 
tissues upregulation of NMDA receptor subunits has been 
shown to contribute to hyperexcitability.[29] Even though 
the role of glutamate receptor in hyeprexcitability has 
been reported in human brain tissue, its involvement in 
seizure generation is complicated. Glutamate neurons on 
one hand synapse onto other glutamate neurons and on 
the other side it also impinges onto GABAergic neurons. 
Thus, it is difficult to predict if glutamate‑induced seizure 
generation is due to excessive glutamate receptor activity 
or it is because of the increased GABA release through 
depolarization of GABAergic neurons [Figure 1].

RoLE oF ALTERED INHIbIToRY 
NEURoTRANSMISSIoN IN 

EPILEPTogENESIS

There are considerable amount of evidences that suggest 
altered GABAergic signaling leads to seizure generation. 
Dysfunction in GABAergic input causing reduced 
inhibition might contribute to epileptogenesis. Impaired 
inhibitory synaptic transmission causes neuronal 
hyperexcitability [Figure 1]. GABAergic inhibition 
regulates the spread of epileptic discharges[30,31] and 
intrinsic burst‑firing properties of neurons.[32] In tissues 
resected from TLE patients’ loss of interneuron density 
has been shown to cause reduced GABAergic synaptic 
transmission.[33] There are also evidences suggesting 
reduction in paravalbumin‑positive interneurons in 
tissues resected from TLE patients.[34] In samples received 
from focal cortical dysplasia (FCD) patients there was 
reduction in the inhibitory (IPSC) frequency due to 
changes in the distribution of interneurons.[35] It is also 
found that the duration of GABA‑evoked IPSCs is 
increased in FCD brain specimen indicating decreased 
release of GABA from the GABAergic terminals.[35] 
Quantitative changes in the subunits of GABA receptor,[36] 
modulation of GABA by other neurotransmitters and 
second messengers,[37,38] and phenotypic changes in 
GABA receptor types that create depolarizing rather than 
hyperpolarizing reactions to GABA[39] are also associated 
with epileptic deregulation. Thus, decrease in the GABA 
signaling allowing uncontrolled glutamate signaling 
cannot be solely implicated for epileptogenesis [Figure 1].

An immature GABAergic inhibitory system has been 
linked to intractable epilepsy. A predominant GABAergic 
synaptic transmission in an immature neuronal network 
can cause depolarization leading to excessive cell 
firing, where GABA may be acting as an excitatory 
neurotransmitter[40,41] [Figure 1]. It is represented 
by higher frequency of spontaneous IPSCs and lower 
frequency of EPSCs as observed in dysmature cerebral 
development in severe cortical dysplasia.[42] Higher 
GABA inputs could also be contributed by cytomegalic 
interneurons[43] and by supernumerary cells in superficial 
layers and white matter observed in severe cortical 
dysplasia cases.[44] There is also possibility of increased 
GABA release and higher number of neurotransmitter 
release site in severe CD cases.[45] An increased GABA 
receptor activity relative glutamate receptor activity has 
been so far reported in severe CD cases and not in non‑CD 
or mild‑CD.[15,46] Histopathological features of tuberous 
scelerosis complex (TSC) cases are similar to severe CD 
cases, but the morphological and electrophysiological 
characteristics of neurons in resected brain samples from 
these two disorders vary significantly.[45] This indicates that 

Figure 1: Abnormal synaptic transmission in epileptogenesis. This simplified 
scheme illustrates the changes in synaptic transmission associated with 
epileptogenesis. For ease of understanding only nicotinic receptors are 
shown to be present on the pyramidal neurons and interneurons. Two models 
have been proposed to explain regulation of synaptic transmission during 
epileptogenesis. In the first model it is hypothesised that decreased nicotinic 
receptor function leads to reduced inhibitory transmission. Reduction in the 
nicotinic receptor activity also causes inhibition of excitatory input to the 
GABAergic neuron which in turn impairs the inhibitory transmission impinging 
onto pyramidal neurons. The other model shows that increased cholinergic 
function causes entrainment of inhibitory transmission. Moreover, it is also 
plausible that upregulation of nicotinic receptor activity leads to increased 
excitatory input to the interneurons, thereby causing excessive GABA release. 
The contribution of enhanced cholinergic stimulation on glutamatergic 
transmission causing hyperexcitabilty should also be considered
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molecular characteristics of TSC more closely resemble 
non‑CD and mild‑CD. These differences indicate that 
mechanism of epileptogenesis varies in patients with 
different epileptic syndromes. This necessitates that these 
facts should be taken into consideration while deciding 
therapies against different epileptic disorders.

RoLE oF NICoTINIC 
RECEPToR‑DEPENDENT SYNAPTIC 

TRANSMISSIoN IN EPILEPTogENESIS

In human brain nicotinic acetylcholine receptors (nAChRs) 
are known to control excitatory and inhibitory synaptic 
transmission mediated by glutamate and GABA, 
respectively. It has been shown that interneurons present 
in human cerebral cortex express α7 and α4b2 subtypes 
of nAChRs and that α4b2 nAChRs present on the 
preterminal regions of the interneurons contributes to 
GABA‑release process.[47] Evidence exists that suggest 
the role of α7 and α4b2nAChRs in nicotine‑induced 
seizures.[48] Reduction in the nAChR function in the 
interneurons that synapse onto pyramidal neurons could 
contribute to the process of epileptogenesis. Nicotinic 
receptors enhance the release of glutamate in case of 
nicotine‑induced seizures through activation of NMDA 
receptors.[49] Mutations in the genes encoding for α7 
and α4b2nAChR subtypes are known to be related to 
various forms of epilepsy.[50‑52] An understanding of the 
mechanisms by which nAChRs regulate the inhibitory 
tonus in the resected brain specimens is likely to provide 
new insights into the involvement of these receptors 
in epileptogenesis. Nicotinic receptors are known to 
provide excitatory input to the interneurons which in 
turn inhibit excitatory pyramidal neurons. Inhibition 
of nicotinic cholinergic input to interneurons reduces 
GABAergic transmission to pyramidal neurons leading 
to increased excitability and seizures.[47] In mice nicotinic 
receptor desensitization inhibited nicotine‑induced 
GABA release and seizures.[48] This suggests epileptic 
activity could be result of disinhibition of pyramidal 
neurons[47,48] [Figure 1]. Another model describing 
the role of nicotinic receptor‑mediated GABAergic 
inhibition is based on the fact that high doses of nicotine 
causes synchronous activation of interneurons.[48] 
Under physiological conditions interneurons generate 
synchronous oscillations, but during seizure there is 
entrainment of synchronous activity leading to activation 
of large populations of pyramidal neurons. It has been 
shown that g‑oscillations during ictal events caused by 
widespread synchronous activity were blocked by GABAA 
receptor antagonist bicuculline,[53,54] suggesting that 
epileptiform activity was induced by increased GABAergic 
transmission [Figure 1]. In animal models it has been 

reported that α7 antagonist methyl lycaconitine (MLA) 
inhibited nicotine‑induced seizures.[48,49] Moreover, 
α7 nAChR antagonists  are known to block 
electroshock‑induced seizures in mice and kindling‑induce 
seizures in rats[55] further indicating that upregulation of 
α7 nAChR activity is involved in epileptogenesis. Under 
resting conditions in rat hippocampal slice preparations 
α7 nAChR function contributes to inhibitory[56] and 
excitatory[57] synaptic transmission. This indicates that 
basal levels of choline or ACh activate α7nAChRs, 
which in turn regulates GABAergic and glutamatergic 
synaptic transmission. Another relevant finding suggests 
that kynurenic acid, a tryptophan metabolite, inhibits 
α7 nAChR‑mediated spontaneous glutamatergic 
currents[57,58] as well as α7 nAChR‑mediated spontaneous 
GABAergic currents.[56,58] Endogenously synthesised 
kynurenic acid is known to suppress epileptiform 
activity in in vitro slice preparations[59] and in vivo 
microdialysis[60,61] in rat models of epilepsy. It is possible 
that the anticonvulsant effects of kynurenic acid are 
mediated by its action on α7 nAChR‑dependent 
GABAergic and glutamatergic synaptic transmission.
Altogether these evidences implicate the role of nicotinic 
receptor‑mediated synchronous GABAergic transmission 
and nicotinic receptor mediated‑excitatory activity in 
epileptogenesis [Figure 1]. Most of these evidences are 
based on experiments performed on animal models, so it 
is of utmost importance to perform similar investigations 
on resected brain samples from epilepsy patients. The 
possible involvement of nicotinic receptors in seizure 
activity might constitute a useful new direction for the 
treatment of intractable epilepsy.

SUMMARY

It is noteworthy that abnormal GABAergic and 
glutamatergic synaptic transmission significantly 
contributes to epileptogenesis. Recording of synaptic 
currents in slices obtained from diseased surgical 
specimen serves as model to investigate mechanisms of 
seizure generation. Impairment in regulation of excitatory 
and inhibitory synaptic transmission could be a cause 
of epileptiform activity in various forms of epilepsy. 
Evidences suggest involvement of nicotinic receptors 
in epileptogenesis through regulation of inhibitory and 
excitatory synaptic transmission. Although resected 
brain samples serves as an ideal model system to study 
epileptogenesis, we would like to emphasize that as 
epilepsy patients are on anticonvulsant medication, the 
possible effects of these drugs on synaptic transmission 
cannot be ruled out. Thus parallel investigations on 
animal models will help interpret the human data to 
advance our understanding of epileptogenesis.
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