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Introduction
External beam radiation therapy  (EBRT) is one of the 
most commonly used methods for cancer treatment in 
which ionizing radiation is used in an attempt to kill the 
malignant tumor cells and slow down their growths. It 
is essential that the prescribed dose be delivered to the 
tumor with high accuracy. This is because under‑dosage 
may not kill all the cancer cells and over‑dosage can harm 
the surrounding healthy tissue more than necessary, which 
could lead to unwanted side effects.
During EBRT treatment, the photon beam passes through 
different tissue densities within the patient’s body before 
it reaches the target. Therefore, beam characteristics 
along a heterogeneous path will be different and dose 
calculation algorithms must incorporate heterogeneity 
corrections.[1,2] American Association of Physicists in 

Medicine, Task Group  65  (AAPM, TG 65) recognized 
that properly accounting for tissue heterogeneity “is an 
essential component of dose optimization and the objective 
analysis of clinical results, especially with the advent of 
3D precision conformal radiotherapy and the extension of 
IMRT treatments to structures that have not been irradiated 
before”.[2]

Previous studies on the effects of low density inhomogeneities 
on dose calculations were mostly focused on within lung 
equivalent materials or near lung/tissue interface or at selected 
depths beyond the low density inhomogeneity.[3‑7] The purpose 
of this study was to investigate the ability of Pencil Beam 
Convolution  (PBC) algorithm and Anisotropic Analytical 
Algorithm (AAA) to calculate the dose in deep‑seated water 
equivalent tissue beyond high density heterogeneity interface. 
The data computed by AAA and PBC were compared against 
the measurements.

Materials and Methods
This study was done in a scenario assuming that tumor 
is located 20  cm deep inside the human body and 6 MV 
photon beam travels through soft tissue followed by lung, 
soft tissue, and rib/bone before reaching the tumor. The 
dose calculations were performed in the Eclipse treatment 
planning system  (TPS), version  8.6.15  (Varian Medical 
Systems, Palo Alto, CA).
Depth dose calculations
The phantom A  (30  ×  30 cm2, 20  cm deep) and phantom 
B  (30  ×  30 cm2, 30  cm deep) were created as 3D CT 
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structure sets in the Eclipse TPS. Each phantom was 
defined as the body structure  (CT number  = 0) in order to 
calculate the dose. Before the dose computation, rectangular 
slabs  (30  ×  30 cm2) of solid water  (density  =  1.0  g/cm3), 
Poly Vinyl Chloride  (PVC)  (density  =  1.6  g/cm3), and 
Styrofoam  (density  =  1.2  ×  10‑3 g/cm3) were scanned 
using GE Light Speed CT Scanner and their CT numbers 
were confirmed equivalent to water, bone, and air, 
respectively. The phantoms’ layers consisting of solid 
water, Styrofoam and PVC were assigned with CT numbers 
of 0,  ‑990 and  +  1200, respectively. All dose calculations 
in this study utilized 6 MV photon beam of Varian Trilogy 
linear accelerator  (Varian Medical Systems, Palo Alto, 
CA) and source to surface distance  (SSD) was set to 
100  cm  [Figure 1]. Furthermore, the dose for 100 Monitor 
Units  (MUs) was calculated by AAA and PBC and 2.5 mm 
calculation grid size was used for all cases.
First, depth doses at an interval of 1  cm along the 
central axis of homogeneous medium  (phantom A) 
were calculated for field size 10  ×  10 cm2. Second, for 
heterogeneous media  (phantom B), dose calculations 
were done for 5  ×  5, 10  ×  10, and 20  ×  20 cm2 field 
sizes. Three points  (P1, P2, and P3) were identified as 
points of interest in the water region and these points are 
labeled in Figure  1. The reason for selecting these three 
points was to investigate if the discrepancies between 
the measured and calculated doses were consistent at 
P1  (1  cm from PVC–water interface), P2  (2  cm from 
PVC–water interface), and P3  (3  cm from PVC–water 
interface). All calculated  (AAA and PBC) doses were 
normalized to the depth of maximum  (dmax) dose.
Depth dose measurements
The central axis depth dose data were measured using 
Exradin A1 cylindrical ionization chamber  (Standard 
Imaging, Middletown, WI) at selected depths in both 
phantoms for 100 MUs of 6 MV photon beam from 

Varian Trilogy linear accelerator, and 100  cm SSD was 
used for all measurements. First, solid water blocks 
of 30  ×  30  ×  20 cm3 dimensions were used and 
measurements were done at an interval of 1  cm up to 
19  cm depth for field size 10  ×  10 cm2. Second, in order 
to simulate the inhomogeneous phantom B, rectangular 
slabs  (30  ×  30 cm2) of solid water, PVC, and Styrofoam 
were arranged as shown in Figure  1. The measurements 
were done at P1, P2, and P3 along the central beam axis 
for field sizes 5  × 5, 10  × 10, and 20  × 20 cm2.
For both phantoms, the average  (Ravg.) of two electrometer 
readings  (nC) at the selected depths was recorded. Then, 
Ravg was converted to the depth dose  (DoseDepth X) using 
equation  (1).
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where, Depth X is a depth at X cm along the central axis 
of the phantom.
All measured doses were normalized to known dose at 
the dmax of 1.5  cm, and the measured percent depth 
doses were compared against the calculated percent depth 
doses  (AAA and PBC).

Results
The benchmark test for the cylindrical ionization chamber 
using the central axis percent depth dose comparison 
in homogenous medium is shown in the Figure  2. The 
agreement between the measured and calculated  (AAA and 
PBC) doses was obtained within ± 1%. This test confirmed 
that the cylindrical ionization chamber could be used for 
measurements in inhomogeneous phantom B.
Table 1 shows the percent depth dose data and the percent 
difference between the measured and calculated data for 
selected measurement points in phantom B. The AAA’s 
values had better agreement with the measurements at all 
three points of interest (P1, P2, and P3) than that of PBC, 
and this was true for all three test field sizes. However, at the 
given point of interest, the discrepancy between calculated 
(AAA and PBC) and measured doses was dependent on the 
field size. For example, at P1, the percent dose differences 
increased from 1.5 to 5.3 for AAA and from 3.7 to 6.7 for 
PBC as the field size increased from 5 × 5 cm2 to 20 × 20 
cm2. This trend of increased percent dose difference as a 
function of field size was observed at P2 and P3 as well 
[Table 1 and Figure 3]. The three measurement points receive 
lateral scatter from the PVC and solid water materials placed 
above them and there is a lateral scatter loss in the air region 
too. Thus, improper beam modeling within algorithms while 
accounting scatter contribution to the measurement points 
may have contributed to these dose discrepancies.
For a given field size, both algorithms exhibited 
maximum  (AAA: Range, 1.5-5.3% and PBC: Range, 
3.7-6.7%) and minimum  (AAA: Range, 0.1-3.6% and 

Figure  1: A  schematic of the experimental setup for depth dose 
computations and measurements in inhomogeneous phantom B, The 
central axis percent depth doses were compared at points of interest 
P1, P2, and P3 which are 1, 2, and 3 cm from the Poly Vinyl Chloride 
‑water interface, respectively
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PBC: Range, 1.9-5.7%) dose discrepancies at P1 and 
P3, respectively. The dose discrepancies were more 
pronounced as the measurement point was closer to the 
high‑density heterogeneity interface  [Figure  3]. As the 
photon beam is hardened when it traverses high density 
medium  (PVC), the removal of low energy photons from 
the photon beam causes increased number of ionizations 
in the PVC, and this phenomenon leads to increase in the 
depth dose downstream. Thus, higher dose overestimation 
at P1 was probably due to improper modeling of the 
altered primary beam attenuation and scatter contribution 
to water‑equivalent material beyond high‑density medium.

Discussions
Dose calculations for EBRT present challenges especially 
when photon beam travels through tissues with different 
densities such as lung, soft tissue, and bony anatomy. The 
accurate modeling of primary beam attenuation and lateral 
scatter due to presence of different media heterogeneities 
along the beam path is essential to prevent from dose 
overestimation or underestimation.

The results from phantom A indicated that PBC and 

AAA could predict the doses in good agreement with the 
measurements in homogenous medium where heterogeneity 
correction is not necessary. However, results from phantom 
B showed the limited accuracy of PBC and AAA in 
heterogeneous media and similar observations were 
reported by other authors.[3,8,9] Moreover, PBC and AAA 
have different approach of beam modeling to account the 
heterogeneities, and brief descriptions of both algorithms 
are presented below. For complete understanding on PBC 
and AAA, readers are advised to refer to papers authored 
by Carrasco et  al.[7] and Van Esch et  al.[8]

The PBC involves the calculation of dose distribution 
in infinitesimally narrow pencil beams  (directed along a 
ray line from the beam source),[10] and dose deposition 
kernels or pencil kernels are derived from measured 
water data.[11,12] The corrections to each pencil beam are 
obtained by a correction factor to account for differences 
in attenuation.[13,14] The heterogeneity correction  (modified 
Batho method) in PBC algorithm takes the position of the 
inhomogeneity with respect to the point of calculation into 
account.[13] However, the dose from the adjacent pencil 
beams is not considered in each calculation, which can lead 
to errors in determination of dose in tissues that are within 
areas of large inhomogeneity. The effect is a heterogeneity 
correction only in the beam path direction, but not in 
lateral direction.[3,13,14] The beams in AAA include separately 
modeled contributions from different photon sources.[3,15] 
The total energy deposited by each beam is obtained by 
the convolution of the separately modeled contributions 
of different photon sources and final dose is calculated by 
the superposition of the contributions from the beams.[3] 
The tissue heterogeneity in AAA is handled by radiologic 
scaling of primary photons and photon scatter kernel scaling 
in lateral directions according to local electron density.[15]

Although we were unable to make direct comparisons of 
our findings against previous studies on AAA and PBC 
due to variability in experimental set ups and difference 
in phantom geometries, it is relevant to mention the work 
of Gray et  al.[12] who investigated the accuracy of AAA 

Table 1: The measured and calculated (Anisotropic 
analytical algorithm and Pencil beam convolution) 
central axis percent depth doses at P1, P2, and 
P3 beyond high density heterogeneity interface for 
field sizes 5 × 5, 10 × 10, and 20 × 20 cm2 (top to 
bottom) are compared. P1, P2, and P3 are points of 
interest at depths of 21, 22, and 23 cm, respectively 
in phantom B [Figure 1]. The measured as well as 
calculated doses were normalized to the dose of 
maximum (dmax) reading obtained at 1.5 cm depth. 
(6 MV photon beam, 100 cm source to surface 
distance  to the surface of phantom)

Measurement AAA PBC
Dose (%) Dose (%) ∆ (%) Dose (%) ∆ %

Field size 
5×5 cm2

P1 35.6 36.1 1.5 36.9 3.7
P2 33.7 33.9 0.6 34.6 2.7
P3 31.8 31.9 0.3 32.5 2.2

Field size 
10×10 cm2

P1 38.7 40.0 3.4 40.8 5.4
P2 37.0 37.6 1.6 38.4 3.8
P3 35.2 35.5 0.9 36.3 3.1

Field size 
20×20 cm2

P1 42.0 44.2 5.3 44.8 6.7
P2 39.8 41.6 4.5 42.6 6.3
P3 38.1 39.5 3.7 40.3 5.8

AAA=Anisotropic analytical algorithm, PBC=Pencil beam convolution 
algorithm

∆ or Difference (%) = 

Calculated (AAA or PBC) Percent Depthh Dose
Measured Percent Depth Dose
Measured Percent Depth 

-
DDose

×100

Figure  2: Central axis percent depth dose comparisons in 
homogeneous phantom A (solid water material) for 6 MV photon beam 
of field size 10 × 10 cm2. Calculated and measured doses normalized 
to dose at depth 1.5 cm
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and PBC in heterogeneous media. Gray et  al.[12] reported 
that results from AAA were better than those calculated by 
the PBC but dose overestimation greater than 2.5% could 
still result when using AAA to calculate the dose beyond 
a large air gap. Robinson et  al.[3] investigated the dose on 
the central beam axis at a vertical depth of 3  cm below 
the proximal surface of the heterogeneity layer of 2-10  cm 
air gap. Robinson reported that the AAA algorithm tends 
to overestimate dose beyond low density heterogeneities. 
This overestimation is shown to be, on average, 3% at 
distances less than 10  cm and up to 7% at distances 
greater than 10  cm. Van Esch et  al.[8] confirmed these 
results as his group investigated the depth dose within a 
phantom consisting of 5  cm solid water, 15  cm cork, then 
10  cm solid water for a variety of field sizes 3  ×  32  cm 
to 20  ×  20 cm2. Their results showed that the AAA 
overestimated the dose by up to 7% beyond the cork slab.
The error in the AAA and PBC doses calculated beyond 
bony material may also occur in other clinical situations 
such as when the treatment beam passes through low density 
material  (e.g., polyurethane foam) in the immobilization device 
prior to entering the patient and then finally reaching the tumor 
situated next to the bone. The errors  (up to 5.3% for AAA 
and up to 6.7% for PBC) found in this study could potentially 
increase as suggested by the results in studies of Robinson 
et al.[3] and Gray et al.[12] that dose discrepancies beyond air 
gaps are also dependent on the size of the air gaps. Future 
work involves the measurements to investigate how different 
thickness of Styrofoam (air‑equivalent material) as well as PVC 
tile (bone‑equivalent material) would affect the dose estimation 
by AAA and PBC at the selected points of interest.

Conclusions
The ability of AAA and PBC to account for heterogeneities 
was investigated using five‑layer heterogeneous phantom 
that had combination of low and high density materials. 
The results of AAA had better agreement with the 

Figure 3: Comparisons between calculated (anisotropic analytical algorithm  on the left and pencil beam convolution  on the right) and measured 
percent depth doses at P1, P2, and P3 for 6 MV photon beam of field sizes 5 × 5, 10 × 10, and 20 × 20 cm2. P1, P2, and P3 are points of interest 
as shown in Figure 1

ba

measurements at selected depths in this study. The dose 
overestimation by AAA  (up to 5.3%) and by PBC  (up 
to 6.7%) was found to be higher nearby the high‑density 
heterogeneity interface, and the dose discrepancies were 
more pronounced for larger field sizes. The finding of this 
study suggests that the AAA is more accurate than PBC 
for dose calculations in treating the target seated beyond 
high‑density heterogeneity interface at deeper depths.
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