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Abstract
Medical	science	 in	general	and	oncology	 in	particular	are	dynamic,	 rapidly	evolving	subjects.	Brain	
and	 spine	 tumors,	 whether	 primary	 or	 secondary,	 constitute	 a	 significant	 number	 of	 cases	 in	 any	
oncological	 practice.	 With	 the	 rapid	 influx	 of	 data	 in	 all	 aspects	 of	 neuro‑oncological	 care,	 it	 is	
almost	impossible	for	practicing	clinicians	to	remain	abreast	with	the	current	trends,	or	to	synthesize	
the	available	data	for	it	to	be	maximally	beneficial	for	their	patients.	Machine‑learning	(ML)	tools	are	
fast	 gaining	 acceptance	 as	 an	 alternative	 to	 conventional	 reliance	 on	 online	 data.	ML	uses	 artificial	
intelligence	 to	 provide	 a	 computer	 algorithm‑based	 information	 to	 clinicians.	 Different	ML	models	
have	been	proposed	 in	 the	 literature	with	 a	 variable	degree	of	 precision	 and	database	 requirements.	
ML	can	potentially	solve	the	aforementioned	problems	for	practicing	clinicians	by	not	just	extracting	
and	 analyzing	 useful	 data,	 by	minimizing	 or	 eliminating	 certain	 potential	 areas	 of	 human	 error,	 by	
creating	patient‑specific	 treatment	plans,	 and	also	by	predicting	outcomes	with	 reasonable	accuracy.	
Current	information	on	ML	in	neuro‑oncology	is	scattered,	and	this	literature	review	is	an	attempt	to	
consolidate	it	and	provide	recent	updates.
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Introduction
Neuro‑oncological	 practice	 routinely	
involves	 confrontation	 with	 questions	
regarding	 risks,	 benefits,	 and	 outcomes	 of	
the	 surgical	 interventions	 for	 neoplastic	
lesions.	 Decision‑making	 is	 often	
influenced	 by	 surgeons’	 experience,	 in	
addition	 to	 evidence	 from	 the	 literature.	
It	 is	 not	 uncommon	 for	 surgeons	 to	 get	
dismayed	 by	 a	 lack	 of	 consolidated	 data	 to	
provide	 evidence‑based	 recommendations	
to	 individual	 patients,	 especially	 when	
dealing	 with	 unusual	 pathologies,	 or	 if	
confronted	 with	 a	 combination	 of	 complex	
diseases.	 Neurosurgical	 procedures	 are	
prone	 to	 the	 risk	of	worsening	neurological	
status	 and	 to	 allow	 learning	 from	 each	
other	 and	 to	 minimize	 adverse	 outcomes;	
a	 vast	 amount	 of	 biomedical	 data	 are	
published	 each	 year.	To	 extract	meaningful	
information	 using	 conventional	 statistics	
from	 this	 “huge	 data”	 is	 overwhelming	
for	 a	 practicing	 surgeon.[1]	 Statistical	
methods	 employed	 in	 medical	 research	
make	 assumptions	 in	 determining	 the	 level	

of	 significance	 (e.g.,	 setting	 a P value)	 by	
estimating	the	correlation	between	variables	
and	 draw	 population	 inference	 from	 the	
sample.	 Statistical	 inferences	 become	 less	
precise	when	 the	number	of	 input	variables	
and	 possible	 associations	 among	 them	
increase.[2]

Machine	 learning	 (ML)	 is	 a	 field	 of	
computer	 science	 that	 studies	 algorithms	
and	 techniques	 for	 automating	 solutions	 to	
complex	problems.	It	differs	from	traditional	
statistical	 methods	 in	 that	 it	 learns	 from	
a	 set	 of	 labelled	 data,	 and	 the	 larger	 the	
dataset,	 the	 more	 robust	 it	 becomes.[3]	 ML	
builds	 complex	 computational	 models	
that	 can	 process	 information	 from	 raw	
data	 and	 generate	 the	 outcome	 of	 interest.	
Neuro‑oncological	 practice	 is	 encompassed	
by	 a	 myriad	 of	 diagnostic	 and	 therapeutic	
challenges,	 with	 a	 growing	 need	 to	 tailor	
therapy	 to	 the	 individual	 patient	 to	 achieve	
the	 best	 possible	 outcomes.	 ML	 models	
have	proven	as	 the	new	armamentarium	for	
clinical	 experts	 with	 widespread	 utility	 in	
neuro‑imaging,	 histopathological	 grading,	
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designating	 the	 best	 treatment	 options,	 and	 as	 outcome	
predictors.

The	 current	 review	 aims	 to	 provide	 a	 brief	 overview	 of	
the	 conceptual	 background	behind	ML	and	provide	 insight	
into	 its	 practical	 application	 in	 neuro‑oncological	 care	 and	
outcome	prediction.

Machine Learning Overview
ML	can	be	broadly	categorized	into	supervised	learning	(SL),	
semi‑supervised,	unsupervised,	and	reinforcement	learning.

In	 SL	 algorithms,	 machine	 is	 registered	 with	 a	 set	 of	
datasets	 with	 right	 answers,	 i.e.,	 a	 “labelled dataset”	 to	 a	
question	 pertaining	 to	 the	 data	 points.	 The	 model	 utilizes	
the	 key	 characteristic	 features	 of	 each	 data	 point	 and	
predicts	 the	 outcome;	 if	 any	 unseen	 data	 are	 entered,	 the	
algorithm	 predicts	 the	 outcome.	 The	 simple	 utility	 of	 the	
SL	model	 could	 be	 seen	 in	 brain	 tumor	 detection	 in	 brain	
magnetic	 resonance	 imaging	 (MRI),	 where	 information	
about	 lesion’s	 shape,	 length,	 consistency,	 and	 vascularity	
is	 used	 to	 classify	 lesions	 into	 normal	 and	 abnormal,	with	
abnormal	 being	 subclassified	 into	 benign	 and	 malignant	
tumors.[4]	 If	 the	model	 is	contained	with	 too	many	 features	
relative	 to	 the	number	of	cases,	 it	may	 incorporate	 random	
error	 or	 noise	 as	 a	 signal,	 also	 referred	 to	 as	 overfitting.	
This	 results	 in	 reduced	 generalizability	 to	 unseen	 data	 and	
an	 increase	 in	 error.	 To	 overcome	 this	 problem,	 the	 SL	
model	should	be	tested	on	data	not	involved	in	the	learning	
process,	 also	 referred	 to	 as	 the	 validation set.	 Three	 most	
common	supervised	ML	algorithms	are	[Figure	1]:
1.	 Decision	 tree:	Algorithm	 that	 makes	 a	 group	 of	 items	

based	 on	 their	 values.	 Each	 tree	 consists	 of	 nodes	 and	
branches.	Nodes	 represent	questions	about	 the	data	and	
branches	denote	possible	answers

2.	 Naïve	 bayes:	Based	 on	Bayes’	 theorem,	 it	 creates	 trees	
based	 on	 their	 probability	 of	 occurrence.	 Mainly	 used	
for	clustering	purposes[5]

3.	 Support	vector	machine	(SVM):	SVM	works	principally	
by	 identifying	 some	 pattern	 in	 data	 points	 and	 draws	 a	
margin	 between	 the	 data	 groups	 called	 hyperplane,	 to	
separate	 into	 two	 classes	 based	 on	 pattern	 difference.	
SVM	 model	 is	 good	 for	 nonlinear	 relationships	 but	 is	
sensitive	to	outliers.[6]

In	 unsupervised	 learning,	 the	 machine	 is	 provided	 with	 a	
dataset	 and	 no	 right	 answer	 is	 provided.	 i.e.,	 “un‑labelled 
data.”	 The	 machine	 will	 determine	 the	 trend	 of	 similarity	
among	 items	 and	 generate	 the	 clusters.	 Here,	 the	 aim	
is	 to	 predict	 patterns	 in	 the	 data	 rather	 than	 an	 outcome.	
With	 the	 ability	 to	 find	 hidden	 relationships	 within	 data,	
unsupervised	 learning	 algorithms	 have	 applications	 in	
association	 and	 clustering	 tasks.	 For	 example,	 to	 identify	
patterns	 in	 genomic	 data	 for	 brain	 tumor	 patients.[7]	 The	
two	main	algorithms	for	clustering	are	given	below:
1.	 K‑means	 clustering:	 It	 automatically	 creates	 clusters,	

and	 items	with	 similar	 features	 are	 placed	 in	 the	 same	

cluster.	The	mean	value	of	a	particular	cluster	lies	in	the	
center	of	that	cluster

2.	 Principal	 component	 analysis	 (PCA):	 PCA	 reduces	 the	
dimensionality	of	data	using	orthogonal	 transformation,	
and	by	doing	 that	 reduces	 the	use	of	a	 large	amount	of	
computational	power.

Semi‑SL	lies	between	supervised	and	unsupervised	learning,	
in	 which	 few	 data	 points	 are	 labelled.	 The	 algorithm	 will	
run	clustering	techniques	to	locate	groups,	and	will	identify	
a	 few	 labelled	 data	 points	 to	 provide	 labels	 to	 other	 data	
points	in	the	group.	It	spares	time	and	effort	in	labelling	all	
the	data	points.

Reinforcement	 learning	 involves	 learning	 the	 ideal	
behavior	 within	 specific	 circumstances	 based	 on	 reward	
feedback	mechanism.	The	 algorithm	aims	 to	maximize	 the	
total	 amount	 of	 reward.	For	 example,the	Q	 learning	 agent,	
a	basic	form	of	reinforcement	learning	model,	that	interacts	
with	 virtual	 glioblastoma	 multiform	 (GBM)	 to	 learn	 and	
identify	 tumor	 parameters	 to	 get	 the	 best	 response	 with	
Temozolomide	 therapy	 and	 thus	 providing	 an	 appropriate	
mathematical	 framework	 for	 the	 optimal	 chemotherapy	
regimen	in	GBM	patients.[8]

Neural	 Network	 learning (or	 artificial	 neural	
network	 [ANN])	 is	 based	 on	 the	 biological	 concept	 of	
neurons.	 The	 input	 layer	 receives	 input	 (like	 dendrites),	
hidden	 layer	 processes	 the	 input	 (like	 soma),	 and	 the	
output	 layer	 sends	 the	 calculated	 output	 (like	 axonal	
terminals).[9]	 ANNs	 are	 universal	 predictors	 that	 can	 be	
applied	 to	 a	wide	variety	of	data,	better	 represent	 complex	
biological	 processes	 that	 have	 nonlinear	 nature.	 Use	 of	
ANN	 in	 clinical	 decision‑making	 for	 example	 involves	
symptom	 recognition,	 imaging	 analysis,	 and	 clinical	
diagnosis	interpretation,	etc.

Deep	 learning	 (DL)	 is	a	subset	of	ML	and	 is	widely	based	
on	 ANN.	 The	 term	 deep	 signifies	 the	 number	 of	 hidden	
layers	 that	 increases	 in	 DL	 compared	 to	 a	 regular	 ANN.	
DL	 algorithm	 can	 work	 on	 diverse,	 unstructured,	 and	
inter‑connected	 data	 without	 need	 of	 any	 manual	 feature	
extraction	 like	 that	 needed	 in	ANN.	 Some	 most	 common	
DL	 algorithms	 are	 deep	 neural	 networks,	 deep	 belief	
networks,	 recurrent	 neural	 networks,	 and	 convolutional	
neural	networks	(CNNs).[10]

CNN	 is	 one	 of	 the	most	 sought	 after	 deep	 neural	 network	
algorithm,	 working	 mainly	 on	 images	 and	 videos.	 CNN	
following	 the	 basic	 model	 of	 DL	 consists	 of	 multiple	
hidden	 layers	 along	 with	 the	 input	 and	 output	 layers.	
A	 convolutional	 layer	 extracts	 features	 from	 the	 input	
image	using	 small	matrices	of	 input	 data	while	 conserving	
relationship	 between	 pixels.	 A	 pooling	 layer	 reduces	 the	
number	 of	 parameters	 needed	 to	 learn	 the	 input	 to	 reduce	
dimensionality	 and	 finally	 a	 fully	 connected	 layer	 that	
flattens	 image	 into	 a	 column	 vector	 and	 forward	 it	 to	
the	 regular	 neural	 network	 that	 finally	 classify	 the	 given	
input.[11]
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Methods
A	 literature	 search	 was	 performed	 using	 PubMed.	 The	
primary	aim	was	to	review	all	indexed	publications	in	English	
language	 medical	 journals.	 The	 search	 syntax	 included	 a	
combination	 of	 Mesh	 keywords	 (“machine	 learning,	 brain	
neoplasms,	 diagnostic	 imaging,	 pathology,	 therapy,	 surgery,	
radiotherapy,	 survival	 outcome,	 and	 prognosis”)	 entered	
in	 PubMed	 search	 builder	 without	 any	 publication	 time	
limits.	All	 studies	 that	 evaluated	ML	models	 application	 in	
neuroimaging,	 diagnosis,	 therapy,	 histopathological	 grading,	
and	 prognostication	 in	 neuro‑oncological	 practice	 were	
included.	 We	 excluded	 animal‑based	 studies,	 conference	
abstracts,	case	reports,	ongoing	clinical	trials,	book	chapters,	
editorials,	 letters	 to	 the	 editor,	 articles	without	 full	 text,	 and	
non‑English	 language	 publications.	 Search	 terms	 yielded	
27	research	articles,	out	of	which	nine	articles	were	included	
for	 a	 brief	 discussion.	 Nineteen	 articles	 were	 excluded,	 as	
they	 were	 not	 relevant	 to	 the	 review	 question	 after	 titles	
and	 abstract	 screening.	The	 narrative	 approach	was	 used	 to	
summarize	the	key	findings	of	each	study	included.

Discussion
Glial tumors grading

Much	of	 the	 research	 in	neuro‑oncology	 is	 focused	on	diffuse	
gliomas.	 World	 Health	 Organization	 (WHO)	 has	 graded	
gliomas	 into	 lower‑grade	 (WHO	Grades	 I	 and	 II)	 and	 higher	

grade	(Grade	III	and	glioblastoma	or	Grade	IV).	Conventional	
MRI	sequences	are	good	at	delineating	tumor	morphology	but	
the	 delineation	 of	 infiltration	 of	 adjacent	 brain	 parenchyma	
on	 the	 T2‑weighted	 image	 or	 fluid	 attenuated	 inversion	
recovery	 (FLAIR)	 sequence	 is	 nearly	 impossible.	 Diffusion	
tensor	 imaging	 (DTI)	 and	 diffusion	 kurtosis	 imaging	 (DKI)	
are	 advanced	MRI	 sequences	 and	 have	 been	 investigated	 for	
preoperative	prediction	of	glioma	grade.	DTI	uses	 a	Gaussian	
distribution	 model	 to	 image	 the	 diffusion	 behavior	 of	 water	
molecules[12]	 while	 DKI	 assumes	 non‑Gaussian	 diffusion	 of	
water	molecules.[13]

In	 the	 study	 conducted	 by	 Takahashi	 et	 al.,	 ML	 models	
were	 used	 to	 review	 MRI	 sequences	 of	 glioma	 patients	
and	 to	 preoperatively	 distinguish	 glioblastoma	 from	
lower‑grade	 gliomas	 (Grades	 2	 and	 3).	 ML	 model	 was	
created	 using	 six	 specific	 features	 extracted	 from	 apparent	
diffusion	 coefficient	 (ADC)	 and	 mean	 kurtosis	 (MK)	 ‑	 a	
type	 of	 diffusion	 kurtosis	 imaging.	 and	 generated	 504	
differentiating	features,	both	semantic	(e.g.,	location,	shape)	
and	 agnostic	 (e.g.,	 individual	 voxels)	 with	 significant	
differences	 (false	 discovery	 rate	 <0.05)	 between	 high	
and	 low‑grade	 glioma.	 The	 SVM	 successfully	 predicted	
the	 preoperative	 glioma	 grades	 with	 area	 under	 the	 curve	
(AUC)	values	of	0.93	±	0.03	and	0.91.[14]

Outcome Prediction
Peeken	 et	 al.	 in	 their	 retrospective	 study	 used	 radiomic	

Figure 1: (a) Decision tree algorithm: A supervised learning algorithm that models a decision tree having nodes and edges using the data sets, answers any 
query using a series of questions with answers usually consisting of binary value. It classifies data and predicts any new dataset based on the modeled tree. 
(b) K-mean algorithm: An unsupervised learning algorithm that clusters the input data based on a similarity value. It has moderate to high efficiency and is 
used for problems where the data are not highly dimensional. (c) Support vector machine: Classify data points by selecting the “separating hyperplane” to 
separate the data into two classes based on pattern difference. (d) Artificial neural networks: Simulate the behavior of a biological neuron and are organized 
in layers of interconnected nodes, with nodes in the input layer receiving input features and hidden layers process the input to relay through the output layer

dc

ba



Hussain, et al.: Machine learning role in Neuro-oncology

Asian Journal of Neurosurgery | Volume 16 | Issue 1 | January-March 2021 11

models	 (the	 science	 of	 extraction	 of	 quantitative	 data	 from	
medical	 images	 using	 algorithms)	 and	 combined	 imaging	
and	 treatment	 features	 to	 elucidate	 prognostic	 factors	 of	
GBM.	 One	 hundred	 and	 eighty‑nine	 patients	 with	 GBM,	
who	 had	 received	 adjuvant	 chemo‑radiation	 were	 included.	
MRI	 features	 based	 on	 Visually	 Accessible	 Rembrandt	
Images	 set,	 which	 is	 a	 system	 created	 to	 enable	 consistent	
description	 of	 gliomas,	 were	 employed.	 Multiple	 random	
survival	 forest	 prediction	 models	 were	 generated	 based	
on	 the	 patient	 training	 set,	 and	 internal	 validation	 was	
performed.	 These	 models	 combined	 clinical,	 pathological,	
and	 radiological	 features	 with	 treatment.	 MRI‑based	 model	
had	 the	 highest	 prediction	 performance	 for	 overall	 survival	
(C‑index:	 0.61	 [95%	 confidence	 interval	 (CI):	 0.51–0.72])	
and	 progression‑free	 survival	 (C‑index:	 0.61	 [0.50–0.72]).	
A	 combination	 of	 all	 the	 factors	 including	 treatment‑related	
information	 further	 increased	 prognostic	 performance	 up	 to	
C‑indices	of	0.73	(0.62–0.84)	for	overall	survival.[15]

Papp	 et	 al.	 had	 included	 in	 their	 study	 seventy	
patients	 with	 treatment‑naïve	 glioma	 that	 was	
L‑S‑methyl‑11C‑methionine	 (11C‑MET)	 positron	 emission	
tomography	 (PET)‑positive	 (in	 vivo	 features),	 and	
histopathological	 grading	 and	 isocitrate	 dehydrogenase	
1	 R132H	 mutational	 status	 was	 known	 (ex	 vivo	 features).	
Using	ML	 three	 predictive	models	were	 created	 to	 predict	
36	months	survival.	One	model	was	based	on	a	combination	
of	in vivo,	ex vivo,	and	patient	information	(M36IEP);	second	
was	based	on in vivo and	patient	 information	only	(M36IP),	
and	 a	 third	was	based	on in vivo information	only	 (M36I).	
M36IEP	model	 after	 cross‑validation	 was	 noted	 to	 have	 the	
highest	 AUC	 value	 of	 0.9.	 It	 demonstrated	 that	 patients’	
younger	 age	 (<45	 years),	 IDH‑R132H	 positive	 status,	
smaller	 tumor	 volume,	 and	 lesser	 tumor‑to‑background	
ratio	 on	 11C‑MET	 PET	 scan	 were	 more	 likely	 to	 have	
achieved	 36	months	 survival.	Apart	 from	 patients’	 clinical	
characteristics	 and	 histopathological	 grading,	 these	
validated	ML	models	 in	 this	 study	 quantified	 tumor	 shape	
features	 (such	 as	 spherical	 dice	 coefficient	 and	 volume)	
on	 imaging,	 and	 showed	 improved	 predictability,	 thus	
signifying	 the	vital	 role	of	ML	models	application	 in	brain	
tumors	survival	prognostication.[16]

In	 higher‑grade	 gliomas,	 DTI	 features	 can	 also	 help	 in	
predicting	 survival	 differences	 by	 providing	 information	
about	 white	 matter	 integrity.[17]	 Functional	 MRI	 can	 also	
reflect	 angiogenesis	 around	 the	 tumor	 field	 which	 is	 a	
key	 feature	 of	 malignancy.[18]	 Dong	 et	 al.,	 reported	 the	
adoption	of	 three‑dimensional	 (3D)	CNNs	 to	automatically	
extract	 features	 from	preoperative	brain	 images.	Sixty‑nine	
patients	 with	 high‑grade	 gliomas	 were	 divided	 into	 two	
groups:	 those	 who	 had	 survived	 more	 than	 22	 months	
(35	 subjects)	 and	 those	 who	 had	 survival	 less	 than	
22	 months	 (34	 subjects).	 3D	 CNNs	 were	 trained	 to	 learn	
features	 from	MRI	 related	 to	 survival	 time	 prediction	 and	
final	 output	 of	 extracted	 features	 were	 fed	 into	 the	 SVM	
for	 survival	 prediction	 model	 with	 an	 accuracy	 of	 89.9%.	

This	 study	 highlights	 another	 important	 functional	 role	 of	
ML	in	neuro‑oncology.[19]

In	 a	 retrospective	 analysis	 of	 400	 patients	 who	 had	
trans‑sphenoidal	resection	of	pituitary	adenoma,	multivariate	
odds	 ratio	 analysis	 revealed	 that	 age	 <40	 years	 was	
associated	with	2.86	greater	odds	of	postoperative	diabetes	
insipidus,	 and	 patients	with	 body	mass	 index	 of	 <30	were	
more	 likely	 to	 develop	 postoperative	 hyponatremia.	 After	
model	 training,	a	 logistic	 regression	model	with	elastic	net	
was	 able	 to	 predict	 similar	 early	 postoperative	 outcomes	
after	pituitary	adenoma	surgery	with	an	overall	accuracy	of	
87%,	(AUC	value	of	82.7).[20]

Brain Metastases
The	 response	 of	 brain	 metastases	 (BM)	 to	 stereotactic	
radiosurgery	 (SRS)	 has	 been	 demonstrated	 by	 the	 use	 of	
CNN‑based	 ensemble	 radiomic	 models,	 which	 interpret	
computer	 tomography	 (CT)	 images.	 CNN‑based	 ML	
models	 were	 taught	 pairs	 of	 tumor	 images	 and	 responses	
to	 SRS	 and	 then	 were	 used	 to	 predict	 SRS	 responses	 for	
unlearned	 images.	 Out	 of	 110	 tumor	 images,	 57	 images	
were	 classified	 as	 responders	 to	 SRS	 and	 53	 images	
as	 nonresponders	 to	 SRS.	 Tumors	 diameters	 and	 total	
dose	 of	 radiation	 between	 the	 two	 groups	 did	 not	
significantly	 differ.	 The	 greatest	 number	 of	 tumors	 in	 the	
responder	 group	 was	 mainly	 of	 breast	 (40%),	 followed	 by	
lung	 (35%),	 while	 in	 the	 nonresponder	 group,	 the	 most	
frequent	 site	 was	 lung	 (30%)	 followed	 by	 breast	 (25%).	
Trained	 ensemble	 neural	 models	 which	 comprised	 of	
10	 individual	 neural	 networks	 had	 better	 predictive	
performance	 than	 the	 individual	 neural	 network	 with	AUC	
values	 ranged	 from	 0.761	 (95%	 CI	 =	 55.2%–97.1%)	 to	
0.856	 (95%	 CI	 =	 68.2%–100%).	 After	 learning	 from	
planning	 CT	 images,	 CNN‑based	 radiomic	 models	 were	
highly	accurate	 in	predicting	 the	BM	response	 to	SRS	 from	
unlearned	images.[21]

Takada	 et	 al.	 created	 ML	 models	 using	 an	 alternating	
decision	 tree	 algorithm,	 wherein	 the	 predictions	 of	
multiple	 decision	 trees	were	 integrated	 in	 a	 process	 called	
ensemble	 methods	 to	 predict	 the	 chances	 of	 disease‑free	
survival	 (DFS)	 and	 BM	 within	 5	 years	 after	 neoadjuvant	
chemotherapy	 plus	 trastuzumab	 in	 postoperative	 breast	
cancer	 patients	 with	 human	 epidermal	 growth	 factor	
receptor	 2‑positive	 status.	The	DFS	and	BM	models	 had	 a	
high	accuracy	in	predicting	prognosis	with	the	AUC	values	
were	 0.785	 (95%	 CI	 =	 0.740–0.831,	 P	<	0.001)	 for	 the	
DFS	model	 and	 0.871	 (95%	CI	 =	 0.830–0.912,	P	<	0.001)	
for	 the	 BM	 model.[22]	 These	 models	 can	 optimize	 future	
surveillance	methods	in	breast	cancer	patients,	which	is	the	
second	only	to	lung	cancer	for	the	development	of	BM.[23]

Gauging Clinical Response
Follow	up	of	 high‑grade	brain	 tumors	 heavily	 relies	 on	 the	
Response	 Assessment	 in	 Neuro‑oncology	 criteria	 (RANO	
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criteria)	 that	 utilizes	 the	 measurement	 of	 enhancing	
and	 nonenhancing	 tumor	 components	 to	 assess	 disease	
progression	 or	 complete,	 partial,	 or	 no	 response	 to	 primary	
therapy.	 Blumenthal	 et	 al.	 evaluated	 140	 MRI	 scans	 of	
32	high‑grade	gliomas	and	six	patients	with	BM.	All	patients	
with	 high‑grade	 lesions	 had	 a	 recurrence	 and	 had	 been	
treated	with	standard	chemoradiation.	SVM	classifier	system	
was	 trained	 to	 classify	 lesions	 based	 on	 four	 components:	
enhancing	 and	 nonenhancing,	 tumor,	 and	 nontumor,	 based	
on	 T1‑weighted,	 FLAIR,	 and	 dynamic‑contrast‑enhancing	
MRI	sequences.	SVM	classifier	results	were	cross‑validated.	
One	hundred	percent	sensitivity	and	specificity	was	noted	in	
detecting	 enhancing	 and	 nonenhancing	 areas	 in	 lesions.	 In	
27	 patients	 with	 high‑grade	 lesions	 consistent	 results	 were	
attained	 by	 SVM	classifier	 between	 changes	 in	 the	 volume	
of	 the	 lesion,	 and	 radiologist’s	 review	 on	 follow	 up	 scans.	
However,	 in	 5	 (16%)	 patients	 increase	 in	 the	 volume	 of	
the	 nonenhancing	 tumor	 component	 was	 detected	 prior	 to	
the	 diagnosis	 made	 by	 radiologist	 (on	 RANO	 criteria)	 by	
several	 months.	 This	 proposed	 automatic	 RANO	 criteria	
system	might	 help	 in	 future	 in	 improving	 therapy	 response	
assessment	and	progression	monitoring.[24]

Limitations of machine learning

ML	models	have	also	been	phrased	as	“black	boxes.”[25]	There	
are	debates	about	problems	looming	around	its	regulation,	or	
whether	 artificial	 intelligence	 technology	 will	 remain	 in	 the	
hands	of	the	few.	One	of	the	major	limitations	of	ML	models	
is	 that	 intent	 and	 causation	 relations	 are	 difficult	 to	 prove.[26]	
These	 ML	 algorithms	 are	 capable	 of	 internalizing	 massive	
data	 and	 can	 use	 it	 to	make	 decisions	 like	 humans,	 without	
ever	 being	 able	 to	 communicate	 their	 reasons.	 The	 recent	
development	of	methods	such	as	saliency	maps	could	unravel	
the	 black‑box	 nature	 of	 these	 models	 by	 cross‑examining	
internal	 algorithm	 feature	 vectors.[27]	 Another	 possible	
challenge	 is	 to	 get	 the	 availability	 of	 large	 heterogeneous	
data	 to	 further	 improve	 the	 generalizability	 of	 results	 across	
the	population.[28]	Sharing	of	data	among	hospitals	could	help	
mitigate	 this	data	gap.	ML	models	will	never	 replace	human	
expertise	 but	 can	 help	 strengthen	 clinical	 decision‑making	
process	 in	 neuro‑oncological	 patient	 care,	 and	 can	 bring	
efficiency	and	consistency	in	delivering	precision	medicine.[29]

Conclusion
ML	 models	 are	 robust	 and	 reasonably	 accurate	 predictive	
algorithms,	 with	 the	 ability	 to	 apprehend	 all	 previous	
institutional	 experiences	 and	 creating	 an	 individualized	
patient	 care	 plan.	 The	 use	 of	 these	 models	 in	
neuro‑oncological	 practice	 can	 help	 physicians	 in	 effective	
communication	 with	 patients	 and	 their	 families	 regarding	
disease	and	its	outcomes.	ML	models	in	neuro‑oncology	are	
likely	to	play	an	important	role	in	achieving	evidence‑based	
and	efficient,	individualized	patient	care.
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