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Introduction
Uncontrolled cellular proliferation, as a 
result of dysregulated cell division, is 
one of the key hallmarks of cancer, and 
identifying appropriate therapeutic targets to 
block cell division is a widely used strategy 
of anticancer therapy. Cyclin‑dependent 
kinases  (CDKs) control the transition from 
one stage of the cell cycle to the next, and 
they are activated upon interaction with 
their partner cyclins.[1] Therefore, quite 
conspicuously, CDKs have long been 
regarded as attractive therapeutic targets 
for cancer treatment. Unfortunately, many 
of the early first‑generation CDK inhibitors 
failed in the clinical development because 
of nonselective pan‑CDK inhibition, which 
was found to be toxic-to-nonmalignant 
cells.[2] These issues of effectiveness and 
toxicity of nonselective CDK inhibitors 
seem to have been overcome in the last 
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Abstract
The cyclin D‑cyclin‑dependent kinase  (CDK) 4/6 pathway controls the cell cycle machinery by 
regulating the G1‑to‑S‑phase transition. Dysregulation of this pathway, resulting in increased cellular 
proliferation, is frequently observed in a variety of human cancers. Activation of cyclin D‑CDK 
4/6 pathway can occur through different mechanisms, including gene amplification/rearrangement, 
loss of negative regulatory factors, epigenetic modifications, and point mutations of different 
components of this pathway. Quite conspicuously, CDK 4/6 inhibitors have emerged as promising 
anticancer agents in various tumors in which CDK 4/6 has a pivotal role in the G1‑to‑S‑phase 
cell cycle transition. The clinical use of first‑generation, nonselective pan‑CDK inhibitors was not 
progressed beyond early phase trials, due to unacceptable toxicity and lack of efficacy noted with 
these agents. The emergence of selective CDK 4/6 inhibitors, including ribociclib, abemaciclib, and 
palbociclib, has enabled us to effectively target cyclin D‑CDK 4/6 pathway, at the cost of acceptable 
toxicity. The results of landmark Phase III trials investigating palbociclib and ribociclib in advanced 
hormone receptor (HR)‑positive breast cancer have demonstrated a substantial clinical benefit with a 
well‑tolerated toxicity profile. Mechanisms of acquired resistance to selective CDK 4/6 inhibitors are 
beginning to emerge. Clearly, a detailed understanding of these resistance mechanisms is very much 
essential for the rational development of post‑CDK 4/6 inhibitor therapeutic strategies. Extending the 
use of selective CDK 4/6 inhibitors beyond HR‑positive breast cancer is a challenging task and will 
likely require identification of clinically meaningful biomarkers to predict response and the use of 
combination approaches to optimize CDK 4/6 targeting.
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decade by the development of selective 
CDK‑targeting agents  –  which selectively 
target CDK 4/6.

Dysregulation of cyclin D‑CDK 4/6 
pathway is frequently observed in human 
cancers and results in uncontrolled cell 
cycle progression.[3] CDK 4/6 mediates 
the transition from G1 to S phase by 
associating with cyclin‑D and regulating 
the phosphorylation of retinoblastoma  (Rb) 
protein. Increased cyclin D‑CDK 4/6 
pathway activity can occur through several 
mechanisms, including overexpression of 
D‑type cyclins, mutation or amplification 
of CDK 4/6, epigenetic alterations, or 
loss of negative regulators.[2,3] Thus, 
the development of selective CDK 4/6 
inhibitors offers a novel therapeutic 
approach in the field of oncology. 
Following the encouraging results of early 
phase clinical trials, three of the selective 
CDK 4/6 inhibitors  (e.g.,  abemaciclib, 
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palbociclib, and ribociclib) have emerged as agents with 
promising anticancer activity and acceptable toxicity 
profile,[4‑10] and among them, palbociclib and ribociclib 
have already received FDA approval, with landmark 
Phase III data available, in the setting of hormone 
receptor  (HR)‑positive, human epidermal growth factor 
receptor‑2 (HER‑2)‑negative advanced breast cancer.[11‑14]

In this review, we discuss the rationale of selectively 
targeting CDK 4/6 pathway and the challenges with regard 
to optimizing their use. We also provide an overview 
of the currently available clinical data for selective 
CDK4/6 inhibitors in different human cancers, other than 
HR‑positive, HER‑2 negative breast cancer.

Overview of Cyclin D‑Cyclin‑Dependent Kinase 
4/6 Pathway Dysregulation
Principle mechanisms by which the cyclin D‑CDK 4/6 
pathway can become dysregulated in various human 
cancers are amplification of the genes encoding cyclin 
D1  (CCND1) or deletion of the locus encoding CDKN2A. 
According to the published data, amplification of 
CCND1 is frequently found in some human cancers, for 
example, breast cancer  (35% of cases), head‑and‑neck 
cancer  (26%–39%), endometrial cancer  (26%), pancreatic 
adenocarcinoma  (25%), and nonsmall cell lung 
cancer  (NSCLC)  (5%–30%).[15,16] In a recently reported 
landmark study, which investigated the role of routine 
molecular screening to identify actionable mutations 
in advanced refractory cancer patients, Cassier et  al. 
found CCND1 amplification and homozygous deletion of 
CDKN2A in 17% and 21% of patients, respectively.[17]

The cyclin D‑CDK 4/6 pathway can be dysregulated by 
multiple other mechanisms also, for example, mutations in 
the genes encoding various components of this pathway, 
epigenetic alterations, and mutations in the upstream 
factors. Haluska and Hodi found that about 20% of 
familial malignant melanoma cases harbor CDKN2A 
mutations.[18,19] Epigenetic modifications of the CDKN2A 
gene have been reported in human ovarian cancer.[20] 
Jackson et  al. highlighted the importance of mutations in 
the upstream factors as a mechanism of cyclin D‑CDK 
4/6 pathway dysregulation in malignant rhabdoid tumors, 
where the INI1/SMARCB1 gene is frequently mutated.[21]

Biologic Rationale of Selectively Inhibiting 
Cyclin‑Dependent Kinase 4/6 in Human Cancers
The ideal CDK‑targeted agents should block CDK‑mediated 
signaling in malignant cells and at the same time should 
spare the aspects of CDK activity which are critical for 
the survival of nonmalignant cells, thus avoiding toxicity. 
Inhibition of CDK1 by nonspecific inhibitors could affect 
all cell types and result in toxicity, as evidenced by the 
reported fact that mouse embryos lacking CDK1 fail 
to develop beyond the blastocyst stage.[22] In addition, 

nonspecific targeting of CDKs might also result in 
inhibition of CDKs 7, 8, and 9, the exact functions of 
which are less well established.[23] Clearly, toxicity is a 
major concern regarding nonselective CDK‑targeted agents 
because CDKs play a critical role in the proliferation of 
both normal cells and cancer cells.

The difficulty in finding a therapeutic window wherein 
CDK inhibition is both safe and effective was reflected 
in the early clinical experience with various nonselective 
CDK inhibitors, for example, flavopiridol and seliciclib. To 
date, the most well‑studied nonselective CDK inhibitor is 
flavopiridol, which showed limited clinical benefit, mainly 
because of its complex pharmacokinetics and high levels 
of off‑target effects.[24] Seliciclib, a purine‑based compound 
that inhibits CDKs 1, 2, 5, 7, and 9, failed to demonstrate 
effective clinical activity in Phase I studies.[25]

It is possible that cancers with known aberrations in the 
cyclin D‑CDK 4/6 pathway will be more sensitive to CDK 
4/6 inhibition than normal cells.[26] Furthermore, selective 
inhibitors spare CDK2 activity which allows normal cells 
to continue to function and proliferate. In addition, in 
contrast to the cytotoxic effects of pan‑CDK inhibitors, 
selective CDK 4/6 inhibitors are usually found to have 
cytostatic effects, which might further limit the potential of 
these agents to cause significant clinical toxicity.[27]

Selective Cyclin‑Dependent Kinase 4/6 Inhibitors 
in Cancer Therapy
As discussed earlier, after the encouraging results 
from preclinical studies, three CDK4/6 inhibitors have 
currently reached early phase clinical trials  –  abemaciclib, 
palbociclib, and ribociclib with published Phase III data 
available for palbociclib and ribociclib, in the setting of 
HR‑positive, HER‑2‑negative advanced breast cancer.[11‑14]

The next part of this review will focus on the currently 
available preclinical and clinical data of selective CDK 
4/6 inhibitors in different human cancers, other than the 
archetypal model of ER‑positive, HER‑2‑negative luminal 
breast cancer.

Preclinical Data
Abemaciclib

It has been shown to reduce the phosphorylation of Rb1 in 
colorectal cancer and melanoma xenografts, thus inducing 
G1 arrest.[28] Abemaciclib has also been demonstrated 
to induce growth regression in vemurafenib‑resistant 
melanoma models, in which expression of cyclin D1 was 
noted to be elevated in conjunction with mitogen‑activated 
protein kinase (MAPK) pathway reactivation in vitro.[29]

Ribociclib

Single‑agent ribociclib has been shown to inhibit the growth 
of neuroblastoma and liposarcoma cell lines, by inducing 
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G1 arrest and reducing Rb1 phosphorylation.[30] It inhibits 
CDK 4/6 effectively even at nanomolar concentrations.

Palbociclib

It has been shown to be active in mantle cell lymphoma 
xenografts[31] and glioblastoma cell lines.[32] Moreover, 
activity of palbociclib in combination with bortezomib has 
been demonstrated in both acute myeloid leukemia and 
myeloma.[33,34] In ovarian cancer cell lines, a response to 
palbociclib was found to be most marked in Rb1‑proficient 
cell lines with low p16INK4A expression, and amplification 
of cyclin E1 was associated with resistance.[35]

Data from Early Phase Clinical Trials
After the publication of promising results from preclinical 
research, quite conspicuously, selective CDK 4/6 inhibitors 
have been investigated in early phase clinical trials also.

Abemaciclib

The first‑in‑human Phase I trial of abemaciclib enrolled 
75 patients with advanced solid tumors.[4] The dose‑limiting 
toxicity was Grade  3 fatigue. The most common 
treatment‑related adverse events  (AEs) included diarrhea 
(52%), nausea  (32%), fatigue  (21%), vomiting  (21%), and 
neutropenia (19%). Pharmacodynamic evidence of targeted 
CDK4/6 inhibition was observed, as shown by a decrease 
in Rb phosphorylation in the skin. In an expansion cohort 
of this trial in patients with NSCLC, 51% achieved at least 
stable disease (SD), with 41% of patients receiving at least 
4 cycles of treatment.[5]

Ribociclib

The initial Phase I dose escalation study of single‑agent 
ribociclib enrolled 128  patients with Rb+  advanced solid 
tumors and lymphomas.[6] The most common AEs were 
neutropenia  (45%), leukopenia  (44%), nausea  (43%), and 
fatigue  (42%).[6] Among 110 evaluable patients, three had 
confirmed partial response  (PR). Prolonged SD for at least 
4 and 6  cycles was seen in 24% and 15% of patients, 
respectively.[6] In a trial of 14 patients with NRAS‑mutated 
melanoma who received ribociclib in combination with 
the   MEK inhibitor binimetinib, six  patients had a PR.[7] 
Another Phase I study investigated ribociclib in pediatric 
patients with malignant rhabdoid tumors, neuroblastoma, 
or other cyclin D‑CDK 4/6‑INK4‑Rb pathway‑activated 
tumors.[36] Ribociclib was well tolerated in the pediatric 
population, with a similar safety profile to that seen in 
adults.[36]

Palbociclib

Two of Phase I studies investigating palbociclib in 
patients with Rb1‑expressing  (Rb+) cancers have shown 
signs of efficacy manifesting predominantly as SD.[8,9] 
Flaherty et  al. reported the first‑in‑human Phase I dose 
escalation study of palbociclib, including 41  patients with 
advanced solid tumors.[8] The most common all‑grade 

nonhematologic AEs after Cycle 1 included fatigue (n = 10; 
24%), diarrhea  (n  =  6; 15%), and nausea, dyspnea, and 
arthralgia  (n  =  5; 12% each). Pharmacodynamic decreases 
in neutrophil and platelet counts correlated with increasing 
palbociclib exposure. During the 7‑day rest period in Cycle 
1, both cell types recovered, indicating that this effect 
was fully reversible. Preliminary signs of clinical activity 
were observed, with 10  patients  (27%) achieving SD for 
at least 4  cycles and 6  patients  (16%) having SD for at 
least 10  cycles.[8] In a third single‑arm study comprising 
17  patients with relapsed mantle cell lymphoma, 
five  patients had a PFS duration of  >12 months, with one 
complete response and two PRs.[10]

Vaughn et al. reported a Phase I trial of three patients with 
growing teratoma syndrome.[37] The efficacy of palbociclib 
has been investigated further in a Phase II study of thirty 
patients with relapsed, Rb1‑proficient germ‑cell tumors, in 
which eight patients had a PFS duration of >24 weeks.[38]

In a Phase II trial of thirty patients with Rb+  advanced 
well‑differentiated or dedifferentiated liposarcoma, 
palbociclib treatment resulted in a 12‑week PFS rate of 
66%, with one patient having a PR.[39] Finally, in a Phase 
II trial of palbociclib in 19 patients with previously treated, 
advanced NSCLC exhibiting Rb expression and CDKN2A 
inactivation, the median PFS was 12.5  weeks, and 
five patients remained on study for at least 24 weeks.[40]

Data from Phase III Randomized Trials
Phase III randomized studies to investigate the 
therapeutic efficacy of selective CDK4/6 inhibitors are 
currently ongoing in a variety of cancers, but till now, 
the only published data are available for patients with 
HR‑positive advanced/metastatic breast cancer.[11‑14] 
The results of two currently ongoing Phase III RCTs in 
lung cancer patients are eagerly awaited. One of them 
(NCT02152631/JUNIPER) is comparing abemaciclib with 
erlotinib in Stage IV NSCLC patients with a detectable 
KRAS mutation who have progressed after platinum‑based 
chemotherapy, taking PFS and OS as primary endpoints. 
The second study  (NCT02154490/Lung‑MAP) is intended 
to compare palbociclib with docetaxel in recurrent stage 
IIIB–IV squamous cell lung cancer, positive for CDK4/6, 
CCND1, CCND2, and CCND3 expression.

Combination of Selective Cyclin‑Dependent 
Kinase 4/6 Inhibitors with Other Therapies
Till date, most of the published data of combining selective 
CDK 4/6 inhibitors with other therapeutic modalities 
are in the setting of HR‑positive advanced breast cancer. 
However, at the same time, there are few encouraging 
published clinical data of different combination approaches 
in other human cancers also.

A number of combination strategies with selective 
CDK 4/6 inhibitors are being tried as treatment options 
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in hematological malignancies, including combination 
with bortezomib in patients with multiple myeloma.[41] 
Moreover, preclinical evidence supports the combination 
of CDK4 inhibition with ibrutinib or PI3K inhibitors in the 
treatment of mantle cell lymphoma.[42]

Preclinical evidence of effectiveness also exists for CDK 
4/6 inhibition in combination with MAPK‑pathway 
inhibition with MEK or BRAF inhibitors in melanoma and 
colorectal cancer. Combination of CDK 4/6 inhibitors with 
RAS/RAF/MEK/ERK pathway inhibitors is a promising 
therapeutic approach in melanoma. Selective CDK4/6 
inhibition with abemaciclib can also resensitize melanoma 
cell lines with BRAF V600E mutation to vemurafenib 
after the development of acquired resistance.[29] There is an 
ongoing Phase Ib/II  (NCT01781572) study, investigating 
the combination of ribociclib with the MEK inhibitor 
binimetinib  (MEK162) in patients with NRAS‑mutant 
melanoma. Common AEs experienced with this combination 
included acneiform dermatitis, nausea, rash, edema, and 
leukopenia.[7] This combination was also associated with 
significant antitumor activity, including cases of PR  (33%) 
and SD  (52%).[7] In BRAF V600E‑mutant melanoma 
models, low‑dose ribociclib exhibited synergistic activity 
with encorafenib (LGX818) – a selective BRAF inhibitor.[43] 
The addition of ribociclib to encorafenib also appeared to 
prevent resistance to encorafenib.[43] In a Phase Ib/II study, 
the combination of ribociclib and encorafenib demonstrated 
clinical activity and an acceptable toxicity profile.[44] Triplet 
combination of ribociclib with binimetinib and encorafenib 
is also being explored in a currently ongoing Phase II 
study (NCT02159066/LOGIC‑2).

Challenges of Extending the use of Selective 
Cyclin‑Dependent Kinase 4/6 Inhibitors beyond 
Hormone Receptor‑Positive Breast Cancer
Although a number of potential biologic biomarkers 
of sensitivity of selective CDK 4/6 inhibitors are 
available  (e.g.,  cyclin D, CDKN2A, and Rb1 status), 
ER‑positive status in breast cancer is the only biomarker 
currently confirmed for clinical use. Some human cancers, 
such as mantle cell lymphoma, probably have subtype‑specific 
sensitivity to selective CDK 4/6 inhibitors, thus ameliorating 
the need for selection markers. However, for most of the 
other human cancer subtypes, biomarkers are essential in 
identifying selective dependence on cyclin D1‑CDK 4/6 
pathway. In an ongoing Phase II/III study  (NCT02154490/
Lung‑MAP), there is a treatment arm in which patients with 
recurrent squamous cell lung cancer are being allocated to 
receive palbociclib on the basis of aberrations in CDK4 
and CCND1‑3. In another ongoing trial  (NCT02187783/
SIGNATURE), patients are being allocated to ribociclib 
therapy on the basis of CCND/CDKN2A/CDK4 aberrations.

Further research work is required to identify biomarkers of 
resistance to selective CDK 4/6 inhibitors in various human 

cancers. Loss of Rb1 function is an established mechanism 
of primary resistance to CDK4/6 inhibitors in vitro, but this 
and other biomarkers of resistance are yet to be validated 
in clinical setting. Loss of Rb1 function is rarely found 
in ER‑positive breast cancer although data are limited 
regarding the changing frequency of Rb1 loss with the 
development of resistance to prior therapies. Amplification 
of E2F or loss of CDKN1A, which are both commonly 
observed in a variety of human cancers and are linked to 
tamoxifen resistance, has been proposed as other potential 
biomarkers of resistance.[45]

Conclusions
The clinical use of selective CDK 4/6 inhibitors, either alone 
or as combination approach, now has proven efficacy in 
patients with advanced stage ER‑positive, HER‑2-negative 
breast cancer. Extending the clinical use of selective CDK 
4/6 inhibition outside HR‑positive advanced breast cancer 
will require identification of human cancer subtypes, and 
those are dependent on the cyclin D‑CDK 4/6 pathway for 
their growth. Moreover, it will also require identification 
of clinically useful biomarkers to expand indications and 
effective drug combinations to overcome resistance. Although 
some of the published preclinical and early phase clinical 
data seem to be very much encouraging regarding the useful 
implementation of selective CDK 4/6 inhibitors in various 
other human cancers, these results must be confirmed in 
Phase III trials before any firm conclusions can be made. 
There is also an urgent need for prospective biomarker‑driven 
clinical trials to identify appropriate target population, for 
whom selective CDK 4/6 inhibition will be cost‑effective.
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