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ABSTRACT
Objective: Physiological networks have recently been employed as an alternative to analyze the 
interaction of  the human body. Within this option, different systems are analyzed as nodes inside a 
communication network as well how  information flows. Several studies have been proposed to study 
sleep subjects with the help of  the Granger causality computation over electroencephalographic 
and heart rate variability signals. However, following this methodology, novel approximations 
for children subjects are presented here, where comparison between adult and children sleep is 
followed through the obtained connectivities.
Methods: Data from ten adults and children were retrospectively extracted from polysomnography 
records. Database was extracted from people suspected of  having sleep disorders who participated 
in a previous study. Connectivity was computed based on Granger causality, according to 
preprocessing of  similar studies in this field. A comparison for adults and children groups with a 
chi-square test was followed, employing the results of  the Granger causality measures.
Results: Results show that differences were mainly established for nodes inside the brain network 
connectivity. Additionally, for interactions between brain and heart networks, it was brought to 
light that children physiology sends more information from heart to brain nodes compared to the 
adults group.
Discussion: This study represents a first sight to children sleep analysis, employing the Granger 
causality computation. It contributes to understand sleep in children employing measurements 
from physiological signals. Preliminary findings suggest more interactions inside the brain network 
for children group compared to adults group.
Keywords: Granger causality; Polysomnography; Brain-heart connectivity; Physiological networks; 
Heart Rate Variability; Electroencephalography.
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INTRODUCTION
Sleep is a physiological and reversible state of 

consciousness that is essential for health. The worldwide 
prevalence of sleep disorders in the general population 
is 35% 1. Sleep quality is related to behavior, attention, 
memory, emotional regulation, physical health and cognitive 
functioning in children and adults. Different strategies have 
been established to assess sleep, such as polysomnography 
(PSG), videosomnography, actigraphy and subjective reports, 
which use information from questionnaires, diaries and other 
data. Of these approaches, researchers seem to prefer methods 
based on PSG because of its utility for monitoring sleep stages 
using electroencephalography (EEG) spectral densities 2–4.

Literature in sleep medicine widely agrees that 
sleep restrictions due to different disorders have adverse 
effects, including deficiencies in memory, emotional 
and cognitive processes in children 5–7 and adults 8–10. 
However, a detailed analysis of the impact of sleep quality 
and duration in children has been not reported in detail 
11. Therefore, there is a need to employ more tools and 
analyses that allow for the quantification of sleep activity 
and its interaction with other processes inside the human 
body, which will require integrating concepts across 
disciplines, and to promote the best and new practices in 
sleep research methods 12.

In the study of the human physiology, it is possible 
to represent each functional part of the body as a node, 
and relationships between those nodes as networks. 
Based on this idea, an approach has been developed in 
the past decade in which the communication between 
different systems, such as the brain, heart, and muscles, is 
investigated using a physiological networks (PN) concept 
13,14. Using this approach, for example, it is possible to 
analyze the interaction between the sympathetic and 
parasympathetic nervous systems through the study of 
sino-atrial node and heart rate variability (HRV) 15. This 
is possible because changes in heart rate (HR) provide 
information about the autonomic performance of the 
human system. HRV measures are obtained through the 
electrocardiographic (ECG) signals, and its following 
calculation of the RR peaks interval times.

The PN approach makes it possible to study the 
human body as nodes in a complex system that reflects the 
dynamic regulation in our bodies 13,14,16. The study of these 
networks in relation to the sleep has been reported by Faes 
et al. 17–19, where the authors investigated information flow 
between the brain and heart networks in adults during 
sleep using EEG and ECG recordings from PSG studies. 
In the studies, the authors examined HRV through a high 
frequency (HF) band and divided the EEG signal into the δ, 
θ, α, β and γ bands, and reported a high interaction between 
the HF power band from HRV and EEG β band. This 
analysis was possible through the application of the Granger 
causality (GC) test, which provides a quantification of the 
communication between nodes 20.

The previous studies were performed in adult 
populations. However, it has been reported that sleep 
differs between children and adults because of differences 
in brain physiology. Thus, the present study aimed to 
evaluate the physiological networks in children during 
sleep, and to compare the results to findings in adults.

MATERIAL AND METHODS
Data were retrospectively extracted from PSG 

records from a database of people suspected of having 
sleep disorders who participated in a PSG study. Two 
groups were established: i) adults with bruxism, habitual 
snoring and sleepiness (ages between 25 and 68 years) 
and ii) children with habitual snoring and breathing 
pauses during the sleep (ages between 3 and 11 years). All 
participants were considered as healthy based on Apnea 
Hypopnea Index (AHI) scores of <10/h for the adults 
group and <2/h for the children group, according to the 
rules of the American Academy of Sleep Medicine (AASM) 
21. Data from the PSG study were collected in the Sleep 
Center (CS, by its acronym in Spanish) of the Fundación 
Neumológica Colombiana (FNC), in compliance with the 
principles of Good Clinical Practice (GCP). Records were 
acquired through the Alice 6 LDE system from Phillips ©, 
during the 2017 – 2018 in Bogota, Colombia.

A technician scored PSG signals, which were 
labeled by sleep stages in 30-seconds epochs, according 
to the AASM policies, and were reviewed by a physician 
expert in sleep medicine. The present study analyzed 
one EEG channel (C3-M2) and a unique ECG channel 
(DII) that represented the brain and heart physiological 
networks, respectively. The EEG and ECG channels 
were acquired with sample rates of 100 Hz and 200 Hz, 
respectively, and a resolution with 16 bits.

Preprocessing

PSG signals were analyzed using GC according to 
similar studies in this field 19,22–24. The use of the EEG and 
ECG signals to represent the interaction of the brain and 
heart networks was carried out through preprocessing 
to relate the information from these sources. For this, 
previous studies using PN analysis, specifically Faes et al. 
17 and Jurysta et al. 25, were used as basis for this step.

To complete the preprocessing, each signal type 
followed a different path from the time series point of 
view. EEG signals were linearly detrended and filtered 
through a Butterworth band-pass with zero-phase and a 
bandwidth in the interval of 0.01 to 45 Hz. Frequencies 
within this range were divided into the subbands: δ, 0.5–3 
Hz; θ, 3–8 Hz; α, 8–12 Hz; β, 12–16 Hz; and γ, 16–25 Hz. 
With the support of trapezoidal integration and the fast 
Fourier transform, the power computation was carried 
out for each of the subbands. A new time series by subband 
was estimated through the mentioned calculation using 
samples from non-overlapping 30-s epochs. In addition, the 



217Orjuela-Cañón AD, et al.

Sleep Sci. 2022;15(Special 1):215-223

data were normalized based on the total power for the EEG 
subbands for whole night. As a result, the brain node and 
its internal subsystems were represented by five power time 
series from the EEG system.

Likewise, the HRV for the heart node was 
determined from processing of ECG signals. First, an 
upsampling step elevated the sample rate to 400 Hz. Then, 
a step for R peaks detection was developed based on the 
Pan–Tompkins algorithm 26. The obtained RR intervals 
were upsampled to 8 Hz and subdivided into 300-s 
windows with an overlap of the last 270 s to compute 
the power. For this, three subbands were analyzed: very 
low frequency (VLF), 0.003–0.04 Hz; low frequency 
(LF), 0.04–0.15 Hz; and high frequency (HF), 0.15–0.4 
Hz 27. The time series extracted from the RR intervals 
were detrended, Hanning windowed, and passed by the 
fast Fourier transform to determine the power spectrum. 
Finally, the data were normalized based on the total 
power considered for the HRV (0.003–0.4 Hz) for the 
entire night. As a result, the heart node was represented 
by three power time series from the HRV subbands

Interaction computation

We used GC to evaluate the PN interaction 
through the five time series (brain node) and the three 
time series (heart node). GC is a measure that quantifies 
the directional connectivity based on a prediction 
developed in two or more systems. To exemplify this, we 
represent the first system or subsystem across the time 
series with X1 and a second subsystem with X2. Then, 
considering X2 as the source and X1 as the target, X2 
Granger-causes X1 when the use of information from past 
values of X2 improves the prediction of X1 in comparison 
to when this information is not used. For this, a bivariate 
autoregressive model of order p AR[p] can be described 
by expressions (1) and (2):

 (1)

 (2)

where X1(t) and X2(t) are two time series that represent 
two process components (in our case, an EEG and HRV 
subband), ρ (order of the model) is the maximum number of 
past observations included in the model, Aj is a matrix with 
model coefficients for each j=1... ρ, and εi are the residuals of 
the prediction for each variable.

To quantify the difference of using the source 
process past, the GC measure proposes two models: a 
full model that includes information from all subsystems 
involved, and a reduced model that uses only part of the 
information. As a prediction is obtained, the error can be 
computed from each model as εfull and εreduced. In this way, 
the GC from X2 to the process X1 can be computed by 
the expression 6:

 (3)

where εfull and εreduced are the errors for the reduced 
and full model, respectively.

For the case of more systems, it is straightforward 
to extend the computation for multivariate autoregressive 
(MVAR) models, employing covariance matrices instead 
of the exhibited errors. In the present study, we analyzed 
eight power time series in total to represent the brain node 
across its subsystems (α, β, δ, γ, and θ subbands) and the 
heart subsystems (VLF, LF, and HF subbands). Both 
groups (children and adults) were compared in terms of the 
connectivity computations. Power time series were estimated 
for sleep stages based on non- and rapid eye movement 
(REM) indicated by the technician expert in sleep medicine.

To obtain the order of the MVAR models, we tested 
different values from one to twenty, and chose the model with 
the best error based on the Bayesian information criterion. At 
the same time, we also took stability of the model into account. 
The computation of the MVAR coefficients was carried out 
with the Levinson-Whittle recursion (LWR) algorithm, which 
is considered as an extension of the Durbin’s recursion 28. As a 
result, 56 connectivity computations were obtained with the 
use of GC measures. Self-connections were excluded because 
of insertion of noise. The computation was accomplished 
with the aid of the MVGC toolbox described previously 29.

Groups comparison

Two groups were analyzed (children and adults) 
and compared. For this, connectivity interaction for each 
subject was represented as a matrix with binary values, 
where one (1) represented a found connectivity and zero 
(0) represented absence of this connectivity, given by the 
GC computation. Subsequently, matrices for each group 
were summed and normalized by the maximum value 
(n = 10 subjwects in each group), demonstrating the 
frequency of each connection between subsystems.

In addition, sleep stages were studied according to 
light sleep, which consisted of NREM stages 1 and 2, and 
deep sleep, which consisted of NREM stage 3 and REM 
sleep. Finally, the groups were compared using the chi-
square test with a p-value < 0.05 considered as significant. 
We performed comparisons for the entire night, for the 
light sleep stage, deep sleep stage and REM stage.

RESULTS
Ten adults (25 to 68 years old, mean of 36.2 + 12 y; 

Table 1) and 10 children (2 to 11 years old, mean 7 + 3 y; 
Table 2) were assessed for age, sex, AHI, and percentage in 
each sleep stage. Duration in sleep stages showed a reduction 
of REM stage sleep from 19% in the children group to 16% 
in the adults group (see Tables 1 and 2).

The most important finding in the present study 
was the differences in the brain–heart interactions 
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Table 1. Characteristics of  the Adults Group.

Subject Age Sex AHI Duration (period 30 s) Light Sleep Deep Sleep REM Sleep Awake

1 44 F 3.2 820 478 (58%) 177 (22%) 100 (12%) 65 (8%)

2 30 F 0.4 969 446 (46%) 171 (18%) 218 (22%) 134 (14%)

3 25 F 3.2 969 467 (48%) 167 (17%) 141 (15%) 194 (20%)

4 41 M 4.4 980 529 (54%) 140 (14%) 243 (25%) 68 (7%)

5 36 F 3.6 857 316 (37%) 284 (33%) 146 (17%) 111 (13%)

6 25 F 1.3 856 331 (39%) 292 (34%) 149 (17%) 84 (10%)

7 68 F 6.7 1074 336 (31%) 439 (41%) 194 (18%) 105 (10%)

8 35 F 1.0 938 511 (54%) 278 (30%) 65 (7%) 84 (9%)

9 28 F 4.2 849 541 (63%) 81 (10%) 134 (16%) 93 (11%)

10 30 F 4.4 854 437 (51%) 172 (20%) 77 (9%) 168 (20%)

Mean 36.2 3.24 916.6 439.2 (48%) 220.1 (24%) 146.7 (16%) 110.6 (12%)
AHI: Apnea Hypopnea Index, REM: Rapid Eye Movement.

Table 2. Characteristics of  the Children Group.

Subject Age Sex AHI Duration (period 30 s) Light Sleep Deep Sleep REM Sleep Awake

1 2 F 0.5 817 301 (37%) 299 (37%) 120 (15%) 97 (11%)

2 4 F 0.4 883 395 (45%) 279 (32%) 154 (17%) 55 (6%)

3 10 M 0.5 966 426 (44%) 252 (26%) 202 (21%) 86 (9%)

4 10 F 0.8 964 436 (45%) 155 (16%) 139 (15%) 234 (24%)

5 9 M 0.3 926 479 (52%) 151 (16%) 196 (21%) 100 (11%)

6 4 F 0.3 903 369 (41%) 205 (23%) 249 (27%) 80 (9%)

7 10 M 0.1 845 512 (61%) 137 (16%) 142 (16%) 54 (7%)

8 5 F 0.0 913 368 (40%) 207 (23%) 252 (28%) 86 (9%)

9 5 F 1.6 1007 471 (47%) 249 (25%) 162 (16%) 125 (12%)

10 11 F 1.8 852 588 (69%) 93 (11%) 145 (17%) 26 (3%)

Mean 7 0.76 907.6 434.5 (48%) 202.7 (22%) 176.1 (19%) 94.3 (11%)
AHI: Apnea Hypopnea Index, REM: Rapid Eye Movement.

between children and adults during sleep. The children 
had increased connectivity from the heart networks 
towards the brain network (Figs. 1 and 2), mainly for the 
γ subband, compared with the adults. For the figures 1 to 
8, the number of interactions is provided in two different 
ways: Part a) in each figure shows a matrix subdivided 
into the brain and heart nodes and their subsystems. Gray 
tones represent the connectivity obtained for all subjects, 
where darker tones indicate a higher number of subjects 
who exhibited that connection. The gradient bar on the 
right side of the matrix indicates the normalized number 
of connections for a maximum value of 10 subjects. Part b) 
visualizes how the connections were established between 
each subsystem. Blue arrows represent connections from 
a brain source and red arrows from a heart source. 
Thickness of the lines indicates the number of subjects 
with that connection.

The children group (see Fig. 2) had a higher 
number of connections related to the heart network than 
the adults group (see Fig. 1) for the sleep entire night, 
with more red arrows as outputs to the brain network, 

mostly for the γ subband. Additionally, there were more 
blue arrows from the brain node to the VLF subsystem.

For the adults group, light sleep, deep sleep and REM sleep 
presented a reduction of the connectivities between the studied 
networks (Figs. 4 to 5). Few number of connectivities from heart 
to brain in adults was seen, visualizing from VLF and HF ones, 
and with a modest performance inside the heart network for deep 
sleep (see Fig. 4). REM sleep reported connectivities entering to δ 
subband from α, β and γ inside the brain network, and from LF 
and HF from the brain network (Fig. 5). Moreover, for the children 
group, connectivities for three stages: light sleep, deep sleep and 
REM sleep presented a notable reduction for the connection from 
heart to brain (Figs. 6 to 8). For the light sleep this decrement was 
observed mainly from the LF and HF subbands (see Fig. 6), and 
for the deep sleep, there were not connections inside the heart 
network (see Fig. 7). The REM sleep stage presented an important 
activity inside the brain network (see Fig. 8).

Observing each sleep stage, the adults group 
presented more connectionsw inside the brain network. 
This is seen when a contrast between figures 3 and 7 are 
analyzed. For the deep sleep stage, it is possible to see 
how the children group gets a greater interaction from the 
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Figure 2. Connections for the Children group: a) Matrix with normalized values for each connection, and b) Blue rows indicate connections from brain to heart and red rows 
indicate connections from heart to brain. Thickness of  the lines indicates the number of  subjects with that connection.

Figure 1. Connections for the Adults group: a) Matrix with normalized values for each connection, and b) Blue rows indicate connections from brain to heart and red rows 
indicate connections from heart to brain. Thickness of  the lines indicates the number of  subjects with that connection.

Figure 3. Connections for the adults group for light sleep (non-rapid eye movement [NREM] stages 1 and 2): a) Matrix with normalized values for each connection, and b) Blue 
rows indicate connections from brain to heart and red rows indicate connections from heart to brain. Thickness of  the lines indicates the number of  subjects with that connection.
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Figure 4. Connections for the adults group for deep sleep (non-rapid eye movement [NREM] stage 3): a) Matrix with normalized values for each connection, and b) Blue rows 
indicate connections from brain to heart and red rows indicate connections from heart to brain. Thickness of  the lines indicates the number of  subjects with that connection.

Figure 6. Connections for the children group for the light sleep (non-rapid eye movement [NREM] stages 1 and 2): a) Matrix with normalized values for each connection, and b) Blue rows 
indicate connections from brain to heart and red rows indicate connections from heart to brain. Thickness of  the lines indicates the number of  subjects with that connection.

Figure 5. Connections for the adults group for rapid eye movement [REM] sleep: a) Matrix with normalized values for each connection, and b) Blue rows indicate connections from brain 
to heart and red rows indicate connections from heart to brain. Thickness of  the lines indicates the number of  subjects with that connection.
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Figure 7. Connections for the children group for the deep sleep (non-rapid eye movement [NREM] stage 3): a) Matrix with normalized values for each connection, and b) Blue rows indicate 
connections from brain to heart and red rows indicate connections from heart to brain. Thickness of  the lines indicates the number of  subjects with that connection.

Figure 8. Connections for the children group for the rapid eye movement [REM] sleep: a) Matrix with normalized values for each connection, and b) Blue rows indicate 
connections from brain to heart and red rows indicate connections from heart to brain. Thickness of  the lines indicates the number of  subjects with that connection.

heart node, which can be noticed with the red arrows in 
figure 8. Finally, the children group also register a higher 
number of interactions in the brain network for the REM 
sleep stage, which can be compared to the adults group 
where there are just three connections to the δ subband.

Finally, the light and deep stages did not have 
significant differences for adults and children through the 
chi-square test.

DISCUSSION
Our results indicate that the occurrence of these 

EEG and ECG networks might be attributed to the 
cardiovascular control in children, which is a higher order 
mechanism. Schwab et al. reported the coordination of 
the EEG and the HR of preterm neonates during NREM 
sleep 30, finding that EEG bursts are associated with heart 
rate accelerations of the HR.

Analysis on children and adults data showed a 
reduction of 3% in REM stage sleep from children to 
adults groups. This effect has been consistently reported 
for more than 40 years 12,31, showing a a reduction in the 
duration of this sleep stage, which mostly occurs during 
first 3 years, a period characterized by rapid growth 
of the connectivity and synapses 12. We found a higher 
number of connections in REM stage sleep in the children 
group than in the adults group, and this difference may 
be related to the brain maturity process (Figs. 5 and 8).

Furthermore, it has been demonstrated that the 
NREM stage sleep δ subband has a decreasing activity 
during the adolescence, which is assumed to the synaptic 
pruning during this period of the life 12,32. Liu et al. 
have reported that in deep and light sleep stages, the 
interchannel interactions are mainly mediated through 
the δ and α subbands, and that during deep sleep, the 
δ subband network is dominant whereas during light 
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sleep, the δ subband network exhibits dominance 33. 
Other studies addressed the slow waves relevance that 
complement this concept were reported by Jurysta in 34,35.

Both groups in the present study showed high values 
considering the α subband as a target when the entire night 
was analyzed (Figs. 1 and 2). For the children group, this 
connection had a high frequency for the light sleep and 
REM sleep stages (note that the column that represents 
the target γ has the darkest squares, Figs. 6a and 8a). In 
the adults group, this γ effect was present for the light 
sleep stage only (Fig. 3a). These findings are consistent 
with published studies, in which γ subband connectivity 
has been demonstrated as a center of communication 17. 
Liu et al. reported that during REM sleep in adults, the 
networks of all frequency subbands have comparable 
contributions to the analysis for communication between 
different brain areas, and exhibited slight prevalence of 
network interactions for the γ and α subbands, whereas 
the γ subband dominated during wakefulness 33.

Our present findings of the brain wave network 
interactions and similar results from other studies indicate 
an evolution in the transition from one physiological 
state to another. This feature follows a particular pattern 
of reorganization, indicating a new aspect of neural 
plasticity, reflected in the coordinated activation of 
different brain rhythms across brain areas 16,17,33,36.

For the children group, the entire night analysis 
(see Fig. 2) exhibited three sources with null connectivity. 
From VLF subsystem, there were not communications to 
HF, LF and α. The δ subband did not send information 
to LF and HF, and γ subband was not a source for the 
subsystems LF and β. In contrast with the adults group, 
the HF subsystem that did not emit information to the 
LF and β subsystems in the children group. There are no 
studies in preschool and school children that establish 
the normal pattern of these networks in this population. 
More studies are required in children of different ages to 
observe the evolution of these heart-brain networks.

A similar approximation from the analysis of 
parasympathetic nervous system activity and sleep was 
reported by El-Sheikh et al. 37,38, where the respiratory 
sinus arrhythmia is argued as the “brake” of the heart 
rate in case of stress. At the same time, these respiratory 
sinus arrhythmia factors are associated to social 
parameters as marital conflicts and adjustment problems 
that can influence sleep in children. In the present study, 
the physiological network analysis of the heart and brain 
nodes may help to improve understanding of the influence 
of these factors from and to the brain network.

The importance of these findings is related to 
clinical applications in sleep-related disorders and 
autonomic regulation. For example, in obstructive sleep 
apnea, better understanding of the heart–brain networks 
during sleep could help form a paradigm of how a sleep 
breathing disorder can lead to permanent dysregulation 

of autonomic cardiovascular control, resulting in 
sustained sympathetic hyperactivity 39. Previous studies 
have reported that a combination of cardiovascular and 
respiratory abnormalities associated with sleep disorders 
can increase cardiovascular risk. These abnormalities 
affect the control and regulation of breathing, manifesting 
disorders such as multiple system atrophy and congenital 
central hypoventilation syndrome 40. In relation to this 
control, an understanding of normal HRV maturation in 
infants allows for reference values to be established for 
future studies of autonomic impairment in children 41. 
Understanding this complex influence of the autonomic 
nervous system on the physiological dynamics of sleep 
can help to provide strategies of therapeutic approaches 
in children and adults 22. Finally, a clinician perspective 
based on HRV information might be an useful tool 
for detecting autonomic irregularities associated to 
neurological disorders through the assessment of the 
brain–heart connections 39.

The number of subjects we examined is a 
limitation of the study, and studies with larger group 
sizes are needed. A balanced participation of women and 
men is another aspect to take into account, especially in 
the adults group, where the sample considered only one 
male. Additionally, because the subjects were selected 
from a population referred to a sleep study, there are a 
limited number of “healthy” subjects, and it therefore 
cannot be ruled out that the subjects had another clinical 
condition, despite having a normal AHI. Finally, new 
techniques can provide more information for the analysis 
of EEG and HRV (for example, computations based on 
transfer entropy or neural networks Granger causality), 
which will be included in future studies.
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