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INTRODUCTION

The benefits of increased productivity with predictable outcome 
became obvious in the automobile and aerospace industries in 
the 1970s as a result of the application of the computer-aided 
design (CAD) and computer-aided manufacturing (CAM) tech-
nology. With industry the widespread use of CAD/CAM tech-
nology produced both the momentum and desire to translate 
three-dimensional (3D) images into physical prototype models. 
In parallel, computed tomography (CT) imaging captured for 
the first time the living human anatomy in 3D [1,2]. It then be-
came possible to translate the CAD/CAM technology to poten-
tial applications in the medical and dental fields. 

The impact of the CAD/CAM technology, in particular, the 

rapid prototyping (RP) technology, together with the available 
of the 3D medical images (CT and magnetic resonance imaging 
[MRI]) and medical image analysis software, has been transform-
ing clinical practice in craniomaxillofacial surgery in the past de-
cades. Today the applications extend from the custom fabricated 
craniofacial prosthetic implants [3] to occlusal guides for orthog-
nathic surgical procedures [4].

This article illustrates the components, system and clinical 
management of the virtual surgical planning (VSP) and CAD/
CAM technology including: data acquisition, virtual surgical 
and treatment planning, individual implant design and fabrica-
tion, and outcome assessment. It focuses primarily on the tech-
nical aspects of the VSP and CAD/CAM system to improve the 
predictability of the planning and outcome.
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A BRIEF HISTORICAL REVIEW

The application in the field of craniomaxillofacial surgery can 
be traced back as early as the 1980’s when the anatomical model 
with detailed geometric features were built from the CT scan 
slices [5,6]. Initially, this was achieved using computer numeri-
cally controlled (CNC) milling machines that used the 3D data 
to cut the shape of each CT ‘slice’ from a solid block of styrofoam 
or polyurethane. This late 1980’s technology was used to produce 
rather crude physical models of heads and faces with ‘stepped’ 
surfaces reflecting both the ‘sliced’ CT data with the height or 
the slice thickness of 3 to 6 mm and the capacity of the milling 
machine at that time. With time this system evolved producing 
more accurate models [7-9] and simple prostheses [3,10,11]. 
However, the limitation to this method is that the level of com-
plexity that is required for detailed anatomical models cannot be 
reproduced even by five-axis milling machines [12].

A more useful approach is the RP technology, such as selective 
laser sintering (SLS) and stereolithography (SLA) that emerged 
in late 1980s [13-15], and 3D printer that is popular today [4]. 
The RP technology works on the principle of building up the 
model in layers or slices by material deposition rather than cut-
ting down a block of polyurethane. As an anatomical part can be 
scanned into a computer system slice by slice, similarly an object 
can be faithfully reproduced slice by slice using the 3D computer 
data in conjunction with a RP machine. As the model is created 
tomographically, it contains nearly all the details of its internal 
contour geometry, not just the outer surface as in the milling 
technique [16]. Using this technology, life size 3D solid skull 
models were made and used to select optimal bone graft donor 
sites [17,18] or used as a guide to fabricate implants [19-21]. 

In addition to the RP technology, several critical technologi-
cal developments in last two to three decades contributed to 
the widespread use of the CAD/CAM technology from the 
patient specific models to individualized implants, prosthesis, 
to the surgical panning and guidance. Among the developments 
were: 1) the improvement of image quality and resolution in 
medical images with CT scan capable of less than 1 mm in slice 
thickness, 2) Cone-beam CT scanners that provide maxillo-
facial information with finer resolution and considerable less 
radiation to patient, 3) the development of the medical image 
analysis software, 4) the development of the biomaterials such 
as those can be fabricated using RP technology with controllable 
strength and properties to simulate real tissues, and, perhaps the 
most important, 5) the computer technology: processors with a 
speeds exceeding 1 GHz, unlimited storage space, large random 
access memory (RAM), dedicated graphic cards and software 
for near real visualization, and internet. 

It is important to recognize that the medical imaging analysis 
technology has been growing at a considerable pace while its 
application is limited by the confidence of the reconstructive 
surgeons. In 1990s, software algorithms that would generate 3D 
reconstructed images based on 2D slices of the CT datasets be-
came available to the surgeon for visualizing cranio-maxillofacial 
deformities [7]. High-quality 3D digital models could be auto-
matically produced without the need for manual revisions. Using 
an interactive program, 3D CT images can be manipulated, and 
osseous objects can be created to simulate the simple surgical os-
seous procedures [7,22]. Quantitative measurements were read-
ily performed on the images with validated accuracy [23-33]. 
With this first decade of the new century, surgical simulation 
gained considerable progress when the separation and move-
ment of the 3D object became available to simulate the osteoto-
my and the movement of the skeletal elements with 6 degrees of 
freedom [34-36]. Unlike the physical models of the 1990’s, the 
computer simulation system now allowed the surgeon unlim-
ited trials to quantify the deformity in 3D, simulate the surgical 
procedure, and design the implants virtually. It becomes a useful 
tool for reverse engineering in clinical applications. 

In parallel to the 3D volumetric data acquisition such as CT, 
cone beam CT (CBCT), and MRI, the surface image scanners 
became available to the clinical practice. This surface data acqui-
sition technology evolves from the high speed high resolution 
3D laser scanners that acquire images without color to the 3D 
optical systems that capture the texture and color of the soft 
tissue envelop using synchronized multiple cameras within 
seconds [37]. The 3D surface image datasets can be superim-
posed and fused with 3D volumetric data such as CT scan data 
to build a more realistic digital model. These provide not only a 
new way to evaluate the surgical outcome without radiation ex-
posure to the patients but also critical information for modeling 
and simulating the soft tissue responses to osseous movement 
and implant insertion. These advances have contributed to the 
emerging technology- the VSP system. 

Today the VSP+CAD/CAM system functions as an integrated 
system in a new level compare to its earlier concept [38]. The 
medical image analysis software is capable of extracting compli-
cated geometrical information of a skull from CT scans to build 
a 3D digital model virtually combining both volumetric and 
surface images. This 3D digital model can then be manipulated 
to simulate the surgical procedure such as osteotomy, and the el-
ements repositioned for a final surgical plan that is virtually cre-
ated. In addition, virtual devices (such as distraction devices and 
dental implants) can be integrated in the planning system. When 
alloplastic implants need to be customized, CAD software can 
be utilized to further design the implant, and then be transferred 
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to a CAM system such as a stereolithograph machine to build 
physical models and implants. Both virtual planning and physi-
cal models provide the reconstructive surgeon with not only the 
individual patient specific anatomy in sufficient anatomic detail 
but also intra-operative guidance for repositioning and alloplas-
tic implants when needed. 

A DESCRIPTION OF THE VSP+CAD/
CAM SYSTEM 

Although it may varies depending upon the specific application, 
a typical state of art VSP/CAD/CAM system include, but not 
limited to, the following components: 1) data acquisition, 2) 
medical image analysis, 3) 3D anthropometric analysis, 4) surgi-
cal simulation, 5) implant/template design via CAD software, 
6) implant/template fabrication via RP, 7) on-line communi-
cation tool, and 8) management system. Fig. 1 illustrates the 
VSP+CAD/CAM system established at The Craniofacial Cen-
ter, University of Illinois Medical Center and Shriners Hospitals 
for Children–Chicago.

The input data of the VSP+CAD/CAM system includes: 1) CT 
scan data of a patient from either a spiral CT scanner or a cone 
beam CT scanner such as iCAT Next Generation 17-19 (Imaging 
Sciences International Inc., Hatfield, PA, USA), 2) 3D photos of 

a patient from a 3D surface imaging system such as 2 port 3dMD-
Face system (3dMD Inc., Atlanta, GA, USA), and 3) 3D surface 
laser scans of small objects such as dental castings from a Roland 
Picza laser scanner (Roland DGA Corp, Irvine, CA, USA). 

Both volume and surface images are processed using surgi-
cal planning software such as: 1) MIMICS (Materialise N.V., 
Leuven, Belgium), 2) SimPlant Pro/OMS (Materialise Dental 
N.V.), and 3) 3dMD Vultus (3dMD Inc.). The image processing 
includes reorientation of the CT scan data, segmentation of ana-
tomical components (i.e., skull, mandible, soft tissue, nerve, de-
vices), and establishment of the composite model that combines 
all necessary information via registration or superimposition. 
One of advantages of building composite model is that artifacts 
of metals (such as braces) in CT scan can be eliminated during 
the 3D modeling stage [39]. 

These surgical planning software allow the surgeons to con-
duct the user-defined 3D anthropometric analysis, which not 
only provide quantified information on the deformity but also 
interactive with surgical simulation process and provide predict-
ed measures accordingly. They are capable to simulate surgical 
process such as the osteotomies of the skeletal structures, reposi-
tioning of the segments, evaluation of occlusion, 3D photo map-
ping, and even simulate the soft tissue response to the skeletal 
reconstruction. It is to be noted that the soft tissue simulation 
function is still in its infancy and thus has not yet been integrated 
into the clinical protocol. 

The virtual surgical planning software can be accessed remotely 
in both the clinic site and the operating room via hospital-wide 
network. This implementation allows the surgical planning be 
conducted in a team conference with the attendance of surgeons, 
orthodontists and other clinicians in the clinic sites. This system 
also allows the virtual surgical plan be demonstrated in the op-
erating room via a 42 inch monitor. Moreover, surgical planning 
and simulation can be conducted in the operating room when 
needed. This also facilitates the patient education and resident 
training.

Once the virtual surgical plan is approved by the surgeons, the 
implant and intraoperative surgical guides (such as splints for 
orthognathic surgery) are designed. They are further refined 
using CAD software and fabricated using RP techniques by 
manufacturers and then delivered to operating room. The com-
munication between the surgeons and manufacturers can be 
conducted via online meeting.

The management of the data flow and communication is chal-
lenge and demanding. It is crucial to develop a practical protocol 
that all involved parties may follow. A four-week cycle protocol 
has been developed and applied. Following this protocol, the 
patient data including CT or CBCT, 3D photo, and dental cast-

Fig. 1. A VSP+CAD/CAM system

Based upon the imported patient data that including 3D photos 
from a 2 port 3dMDFace system (3dMD Inc.), CBCT from iCAT Next 
Generation 17-19 (Imaging Sciences International Inc.) and surface 
images from a Roland Picza laser scanner (Roland DGA Corp), a 
composite model is built and the surgical simulation is conducted 
using the virtual surgical planning software. The software is accessible 
from the team conference room and the operation room. The 
physical objects such as implant and splint can be designed virtually, 
and fabricated using a 3D printer, and delivered to the operation 
room. VSP, virtual surgical planning; CAD, computer-aided design; 
CAM, computer-aided manufacturing; CBCT, cone beam computed 
tomography.
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ing is collected in the first week. The VSP is conducted in the 
second week. So does the design of the implant and the splint. 
The implant and splint is fabricated and delivered in the third 
week and get ready for the operation in the fourth week. 

A CASE STUDY

Which components of the VSP and CAD/CAM technology are 
critical vary with the clinical case. For this article, we illustrate 
a case in which this process and work flow of a VSP and CAD/
CAM approach is relevant. Fig. 2 shows the residual asymmetry 
of post-orthognathic surgery CT of a patient with left hemifacial 
microsomia. The process of VSP was used to determine whether 
a left repositioning zygoma would be sufficient to correct the 
asymmetry with autogenous reconstruction alone versus an al-

loplastic solution. The technical work flow is illustrated by Fig. 3. 
The CT scan of the head was acquired using a Spiral CT scan-

ner: GE Light Speed VCT scanner (GE Medical, Milwaukee, WI, 
USA), with the in plane resolution or pixel size of 0.352 × 0.352 
mm, and the slice thickness of 2.5 mm (Please to be noted that 

Fig. 2. Virtual skull model with left hemifacial microsomia

Red circle highlights the asymmetrical residual deformity at the left 
zygomatic-orbital region after orthognathic surgery. The asymmetry 
can be quantified via 3D anthropometric analysis using user-defined 
landmarks.

Fig. 3. Work flow to correct the zygomatic asymmetry

If the autogenous reconstructive approach cannot achieve the goal with 
satisfaction, then the alloplastic implant approach will be employed. CT, 
computed tomography.
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Fig. 4. Mirror the unaffected side

Mirror copy of the unaffected right side was positioned to the affected left side to achieve the symmetry. (A) Superior. (B) Inferior view.
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the slice thickness of no more than 1 mm is preferred for most ap-
plications). All data were recorded in Digital Imaging and Com-
munications in Medicine (DICOM) format. The 3D reconstruc-
tion of the images, and the surgical simulation were performed 
using the MIMICS ver. 12 software (Materialise N.V.). Also, post 
operational 3D photos were acquired using 3dMD Face system 
and processed using 3dMD Patient software (3dMD Inc.).

Based on facial symmetry principle, the mirror copy of the 
skeletal structure was generated, as shown in Fig. 4. The mid-
sagittal plane was initially used for the left-right mirror plane, 
and then further adjustment of the mirror copy was conducted 
to improve the overall harmony. Such adjustments were con-
ducted using both objective criteria, that is a user-defined 3D 
anthropometric analysis, and subjective criteria, that is the visual 
observation and judgment of a surgeon and/or biomedical engi-
neer based upon experience and professional training. The mir-

ror image then set the boundary surface (the ideal surface or the 
reference surface) against which various surgical options were 
assessed. 

The treatment plan was simulated with two different approach-
es to achieving symmetry: autogenous skeletal reconstruction 
versus alloplastic implant. Autogenous reconstruction is gener-
ally the favored approach because of long term stability and with-
out the long term concern of alloplastic tissue interface problems. 
Thus the surgeon must decide if an autogenous reconstruction 
can achieve the desired outcome. By performing the surgery 
virtually, the surgeon can optimize the various surgical options 
and the patient has an opportunity to visualize the complexity of 
achieving the desired result. 

The prediction from the autogenous skeletal reconstruction 
approach is presented in Fig. 5. Various designs of the osteotomy 
and reposition could not achieve the tolerance limit for asym-

Fig. 6. The alloplastic implant approach

The volumes in purple and in light green predict the implant to achieve the symmetry. (A) Frontal, (B) oblique, (C) left view. The volume in light green 
is thin.

A CB

Fig. 5. The reconstructive approach

The bony segment in red was separated (A) and moved to fit to the mirror reference in blue and the difference in all three reposition scenario (B-D) 
was not acceptable to the tolerance limit.

A B C D
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metry by the patient and the surgeon. Thus a custom alloplastic 
implant was designed that would achieve the desired symmetry 
(Fig. 6). 

For the alloplastic implant approach, Boolean operation (on 
polygons) [40] was used to calculate the differences between the 
actual skeletal surface and the reference surface, and then initial 
design of the implant was extracted accordingly. In such initial 
design there were thin edges, such as in the nasal side, which were 
unfavorable to the manufacture process. The implant was thus 
redesigned by the manufacturer. From surgeon point of view, how-
ever, the redesigned piece was too small and might be unstable 
in long term, additional extension to both lateral orbital rim and 
zygomatic process were needed. Further modifications were made 
in the final design of the alloplastic implant, as shown in Fig. 7. 

A plaster skull model and a plaster prototype of the implant 

were made by RP facility and delivered to the surgeon for com-
munication and approval, as shown in Fig. 7. The HTR-PMI 
implant with the final design was made using porous PMMA 
material (Biomed Microfixtion, Jacksonville, FL, USA), steril-
ized and delivered to the operation room directly. Also delivered 
to the operation room was the surgical plan in the software. 

After the skeletal surface was exposed, the implant fitted well to 
the surface topography and was then fixed with titanium screws, 
as shown in Fig. 8. Intraoperative exposure of the osseous defects 
was facilitated by on-site inspection of the plaster skull model. 
No unexpected deformities or untoward injuries were encoun-
tered during the operation. The fit of the HTR-PMI implant was 
extremely well, and consequently, no adjustments were needed. 
The patient was followed for 2 years and the facial symmetry was 
achieved. There were no complications.

CONCLUSIONS

By performing the surgery virtually, the surgeon can compare 
and optimize the various surgical options and the patient has an 
opportunity to visualize the complexity of achieving the desired 
result. By deliver the individual implant and splint to the opera-
tion room directly, the virtual surgical plan can be transferred 
to the operating table instead of just stay in the computer. A less 
invasive surgical procedure, less time-consuming and adequate 
aesthetic results can be achieved. Many patients have been ben-
efitted from the VSP+CAD/CAM system.
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