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INTRODUCTION

The clinicopathological classification of vascular anomalies, 
which was first proposed by Mulliken and Glowacki in 1982 [1], 
has continued to be a basic standard. The classification of these 
anomalies into two broad categories—tumors and vascular mal-
formations—was the basis of the 2018 classification proposed 
by the International Society for the Study of Vascular Anomalies 
(ISSVA). However, there are still many limitations of patho-
physiological analyses on the basis of clinical and histological 
findings [2-4]. Since recent studies have identified many genes 
potentially linked to vascular anomalies, several pathophysiolog-
ical analyses based on these genes have been conducted, and po-
tential new treatments have also been proposed. Since the 
1990s, the genetic basis for vascular anomalies has been eluci-

dated, and as a result, mutations associated with numerous types 
of lesions have been reported over the past few years [3]. Recent 
developments in sequencing technologies have opened new ho-
rizons in terms of genomic studies, and research in this field is 
actively expanding [5]. This article presents an introduction to 
genetic testing for vascular anomalies and a brief summary of 
the etiology and genetics of vascular anomalies.

GENETIC TESTS FOR VASCULAR 
ANOMALIES

In the past few decades, remarkable and unexpected advances in 
genetic testing have been made. The completion of the Human 
Genome Project in 2003 was followed by a veritable flood of dis-
coveries regarding the genetic basis of various diseases [6]. Even-
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tually, patients’ genomes will be sequenced to identify genetic dis-
eases, to analyze the causes of complex multifactorial diseases, and 
to predict the best treatment and prognosis for each individual. 

There are two major classes of genetic variations: copy num-
ber variations (CNVs) and single-nucleotide variants (SNVs). A 
CNV is defined as a change in length of 1,000 or more base se-
quences. Genome-wide CNVs can be detected using a chromo-
somal microarray (CMA) with high resolution. SNVs take place 
when a single nucleotide (e.g., A, T, C, or G) is altered in the 
DNA sequence. SNVs are the most frequent genomic variations. 

Sequencing refers to reading the DNA base sequence contain-
ing genetic information in order. DNA sequencing can be 
broadly divided into Sanger sequencing and next-generation se-
quencing (NGS) [7]. The Sanger method involves sequencing 
single strands of DNA, whereas in NGS, one long DNA strand 
is cut into millions of strands, and then genes are amplified and 
sequenced at once [7,8]. NGS is composed of four basic steps. 
The first step is library preparation, in which extracted DNA is 
cut into millions of pieces randomly and then adapters are at-
tached to the 5´ and 3´ ends of DNA for further polymerase 
chain reaction (PCR). Second, in the cluster generation step, 
each of the millions of DNA fragments is amplified through 
PCR to create clonal clusters. Third, in the sequencing step, 
complementary nucleotides are generated by DNA polymerase 
from the DNA strand cluster and the nucleotide type is identi-
fied with fluorescence. Fourth, in the data analysis step, the se-
quence data of millions of short reads are arranged using the ref-
erence genome and sequencing results are obtained through 
bioinformatics. Sanger sequencing reads hundreds of nucleotide 
sequences in detail, whereas NGS can quickly identify sequenc-
es across genomes at a low cost. The general category of NGS 
includes whole exome sequencing (WES), targeted gene panel 
sequencing (TS), and whole genome sequencing (WGS). 

Applicable genetic testing methods for vascular anomalies are 
Sanger sequencing for a defined phenotype with a monogenic 
disorder, CMA, TS, WES, and WGS. The testing method 
should be carefully chosen according to the purpose of testing. 
Usually, CNVs are analyzed by CMA or WGS, whereas SNVs 
and small insertions/deletions are more suitable for analysis by 
sequencing, WES, or WGS. Genetic testing can follow an order-
ly progression if the diagnosis remains unclear.

Mutations can be classified into germline mutations and so-
matic mutations. Germline mutations pass from the parent to 
the offspring through germ cells, and can therefore be found in 
almost every cell in an individual. Somatic mutations occur only 
in a subgroup of cells (excluding germ cells) in an individual. 
Therefore, these mutations are not transmitted to the next gen-
eration. Instead, they are only transmitted to the offspring of the 

affected cells, giving rise to somatic mosaicism, which plays a 
major role in the development of vascular lesions. Somatic mu-
tations can cause disease, as exemplified by cancer, where cells 
acquire somatic mutations and develop into tumors.

Although familial inheritance has also been reported, most 
vascular anomalies are sporadic. Germline mutations can be 
tested using blood, buccal mucosal cells, or lesion tissue sam-
ples; however, somatic mutations can only be found in lesion 
tissue samples. NGS has proven to be a valuable tool for discov-
ering somatic mutations [9,10].

GENETICS OF VASCULAR 
ANOMALIES

The causal genes of vascular anomalies known to date are well 
organized in the ISSVA classification of vascular anomalies 
(c2018 ISSVA, available from: issva.org/classification) [11].

Vascular tumors
Infantile hemangioma 
Infantile hemangioma (IH) arises from the proliferation of en-
dothelial cells (ECs). Two main proposals have been made re-
garding the origins of ECs in IH: embolic placental angioblasts, 
which share placental markers (glucose transporter protein 1 
[GLUT1], Fcγ receptor II, Lewis Y antigen, and merosin), and 
endothelial progenitor cells (CD133+/CD34+ circulating pro-
genitor cells and stem cells) [12,13]. Vascular endothelial 
growth factor (VEGF)-A signaling is associated with IH. In the 
ECs in IH, the formation of IH has been shown to be caused by 
changes in the VEGF-A signaling pathway that are related to 
missense mutations in the genes encoding VEGFR2 (KDR) 
and TEM8 (ANTXR1) [14,15].

Congenital hemangioma 
There are three types of congenital hemangioma (CH) that ap-
pear fully formed at birth: non-involuting CH, partially involut-
ing CH, and rapidly involuting CH [15,16]. They are all 
GLUT1-negative. It has been reported that there is a mutation 
at the glutamine 209 (Gln209) position in GNAQ or GNA11, 
and the Gln209 missense mutation is known to activate GTP-
dependent signaling, which leads to the constitutive activation 
of MAPK and/or YAP signaling [17].

Pyogenic granuloma 
Pyogenic granuloma (PG) may be isolated or associated with a 
capillary malformation (CM). It has been reported that PGs as-
sociated with CM (secondary PGs) show a somatic GNAQ mu-
tation reflecting an origin from CM cells. Furthermore, BRAF 
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somatic mutations were found in eight of 10 secondary PGs and 
NRAS mutations in one of 10. However, isolated PGs were as-
sociated with BRAF (four of 25) or KRAS (one of 25) muta-
tions [18]. A somatic activating GNA14 mutation has been re-
ported in one case and a GNA11 mutation in two cases [19].

Kaposiform hemangioendothelioma 
Kaposiform hemangioendothelioma (KHE) is usually present 
at birth and is typically diagnosed in infancy or early childhood. 
The incidence of the Kasabach-Merritt phenomenon has been 
estimated at 42% to 71% in KHE [20]. GNA14 mutations were 
found in one of three KHE specimens and one of four closely 
related tufted angiomas [19].

Vascular malformations
Capillary malformation
CM is the most common type of vascular malformation [21]. 
GNAQ mutations were found in 80%–90% of cases with a spo-
radic or syndromic (Sturge-Weber syndrome) etiology [22]. 
GNA11 mutations were identified in three of eight specimens 
with diffuse CM and overgrowth of an extremity [23]. The 
GNAQ mutations in CM primarily present in ECs [24]. Atypi-
cal CM may co-occur with arteriovenous malformation (AVM) 
in a single patient. This entity, which is referred to as CM-AVM, 
can be subdivided into CM-AVM1 and CM-AVM2. CM-AVM1 
is inherited in an autosomal dominant pattern and is caused by a 
RASA1 mutation [25]. One-third of patients with CM-AVM1 
have fast-flow lesions; in contrast, the risk of fast-flow malforma-
tions is lower in CM-AVM2, which is caused by a loss-of-func-
tion mutation in EPHB4 [26].

Lymphatic malformations
Lymphatic malformations (LMs) are sporadic slow-flow lesions 
that are composed of multiple cystic structures, which can be 
macroscopic, microscopic or combined [27]. PIK3CA muta-
tions were found in 16 of 17 specimens. Mutations in the PIK-
3CA gene can enhance the ability of its protein product to bind 
to the cell membrane or activate its kinase, which results in acti-
vation of the AKT/mTOR signaling pathway [28,29]. Rapamy-
cin (sirolimus), which is well known as an mTOR inhibitor, has 
shown good efficacy and a favorable safety profile when used in 
patients [10]. Primary lymphedema is a type of vascular malfor-
mation that can be hereditary. Several mutations (VEGFR3/
FLT-4, FOXC2, SOX18, CCBE1, etc.) have been identified in 
patients with primary lymphedema [15].

Venous malformations 
Venous malformations (VMs) are usually sporadic, but can be 

familial [30]. Cutaneomucosal autosomal dominant VM was 
found to be caused by TIE2 mutations, which were found in 80 
of 130 specimens of sporadic VMs. Activating somatic muta-
tions of PIK3CA have also been identified in sporadic VMs that 
lacked TEK/TIE2 mutations [3,15,31]. Verrucous VMs associ-
ated with the MAP3K3 mutation are hyperkeratotic abnormali-
ties that affect the skin of limbs [32]. Glomuvenous malforma-
tion (GVM) is an autosomal dominant disease in which several 
small lesions are caused by germline or somatic loss-of-function 
mutations in glomulin (GLMN) [33]. GVMs have reported as 
requiring somatic second-hit mutations to trigger disease onset; 
the first mutation is inherited in an autosomal dominant man-
ner, while the second mutation is acquired. Blue rubber bleb ne-
vus syndrome, which is a non-hereditary condition, presents as 
multifocal VMs. This syndrome is associated with TIE2 muta-
tions [34]. Cerebral cavernous malformations (CCMs) are 
characterized by enlarged capillary cavities in the central ner-
vous system. In 9% of CCM patients, cutaneous lesions are also 
found. CCMs, which are associated with mutations in CCM1/
KRIT1, CCM2/malcavernin, and CCM3/PDCD10, can be spo-
radic or familial [5,35].

Arteriovenous malformations
AVMs are anomalous connections between arteries and veins 
through a nidus or fistula, bypassing high-resistance capillary 
beds [36]. AVMs occur sporadically, and are associated with a 
mutation in the MAP2K1 gene [37]. Inherited AVMs can occur 
in the context of other conditions, such as hereditary hemor-
rhagic telangiectasia (HHT), and combined diseases such as 
CM-AVM (see CM) and Parkes Weber syndrome [10,15,24].

Hereditary hemorrhagic telangiectasia 
HHT is an autosomal dominant vascular dysplasia that can 
cause epistaxis, mucocutaneous telangiectasias, and/or visceral 
AVMs. Ninety percent of HHT cases are associated with a loss-
of-function mutation of one of three identified genes. HHT1 is 
associated with mutations in endoglin (ENG), a co-receptor for 
activin-like receptor; HHT2 with mutations in activin receptor-
like kinase 1 (ACVRL1); and juvenile polyposis/HHT syn-
drome with mutations in MADH4, which encodes the down-
stream effector SMAD4. HHT is associated with germline mu-
tations in genes involved in the TGF-β/BMP signaling pathway 
[5,38,39]. 

Vascular malformations associated with other anomalies 
Vascular malformations are one of the major components in 
various syndromes that cause enlargement of soft tissues or 
bones. Klippel-Trenaunay syndrome (KTS) presents with a 
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classic triad of port-wine stains, asymmetric extremity over-
growth, and underlying VMs or LMs [40,41]. In 19 of 21 KTS 
patients, PIK3CA mutations were found to play a role in the 
pathogenesis of the condition [42]. Macrocephaly-CM usually 
causes neurological abnormalities, and patients typically have 
CM on the upper lip, back, and/or limbs. These patients also 
have PIK3CA mutations [43]. CLOVES syndrome is character-
ized by congenital lipomatosis, overgrowth, vascular malforma-
tions, epidermal nevi, and skeletal anomalies. Mutations in PIK-
3CA were identified in 36 of 38 patients [44]. Proteus syn-
drome, which features asymmetric growth of skeletal and con-
nective tissue, cerebriform nevi of the hands or feet, epidermal 
nevi, and underlying vascular malformations, results from a so-
matic activating mutation in AKT1 [45]. Maffucci syndrome 

features several enchondromas and soft-tissue VMs. This condi-
tion results from somatic mutations of isocitrate dehydrogenase 
(IDH), with 98% of cases caused by IDH1 mutations and 2% 
by IDH2 mutations [46]. 

ABNORMAL SIGNALING PATHWAYS 
IN VASCULAR ANOMALIES

These genetic mutations directly change the activities of intracel-
lular signaling pathways, thereby influencing various downstream 
actions. The pathways most involved in vascular anomalies are 
the PI3K/AKT/mTOR and RAS/MAPK signaling pathways. 
Another important signaling mechanism is the TGF-β/SMAD 
signaling pathway, which plays a role in HHT (Fig. 1).

Mutations in vascular abnormalities affect genes involved in tyrosine kinase signaling via the RAS or PIK3CA pathways. This figure is a schematic 
diagram of key genetic mutations related to signal transduction and vascular malformations in endothelial cells. Proteins mutated in other vas-
cular disorders are indicated. Mutations in GNAQ/GNA11/GNA14, RASA1, and KRIT lead to constitutive activation of RAS/RAF/MEK/ERK signaling. 
Mutations in TIE2/TEK lead to permanent activation of the PIK3CA/AKT/mTOR pathway. AVM, arteriovenous malformation; BAVM, brain arterio-
venous malformation; BRBNS, blue rubber bleb nevus syndrome; BRRS, Bannayan-Riley-Ruvalcaba syndrome; CCM, cerebral cavernous malfor-
mation; CH, congenital hemangioma; CLAPOS, CLAPO syndrome; CLM, cystic lymphatic malformation; CLOVESS, CLOVES syndrome; CM, capillary 
malformation; CommonVM, common venous malformation; CMAVM, capillary malformation–arteriovenous malformation 1,2; CMOM, capillary 
malformation of macrocephaly; CVM, cutaneomucosal venous malformation; CH DCM, diffuse capillary malformation; EAVM, extracranial arte-
riovenous malformation; FIL, facial infiltrating lipomatosis; FAVA, fibroadipose vascular anomaly; VMCM, Familial venous malformation cutaneous 
and mucosal; HHT, hereditary hemorrhagic telangiectasia; IM, infantile myofibroma; JPHT, juvenile polyposis hemorrhagic telangiectasia; KHE, ka-
posiform hemangioendothelioma; KTS, Klippel-Trenaunay syndrome; LCMCNPLOG, limb capillary malformation with congenital nonprogressive 
limb overgrowth; MD, Milroy’s disease; MCM, megalencephaly capillary malformation; NSCM, non-syndromic capillary malformation; PL, primary 
lymphedema; PS, Proteus syndrome; PTHS, PTEN hamartoma syndrome; PG, pyogenic granuloma; PWS, Parkes Weber syndrome; PWSWM, port 
wine stain with macrocheilia; SVAM, spinal arteriovenous malformation; SWS, Surge-Weber syndrome; TA, tufted angioma; VM, venous malfor-
mation; VVM, verrucous venous malformation. 
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CONCLUSIONS

Advances in DNA sequencing have yielded extensive knowl-
edge regarding the etiological molecular mechanisms involved 
in the development of vascular anomalies. NGS is a very effec-
tive method of analyzing germline and somatic mutations of 
vascular anomalies, which have various phenotypes, and their 
associated dysfunctions. An important point to be emphasized 
is that somatic mutations and their mechanisms for vascular 
anomalies, which mainly are sporadic and unifocal, should be 
further studied in the future. Although many downstream ef-
fects remain unknown, it is clear that normalization of the af-
fected signaling pathways is an important target for treatment. 
Mutation-specific targeted therapies are also being studied, 
which may result in a paradigm shift in therapeutic approaches 
to vascular anomalies. Further research into the cellular effects 
of mutations is expected to yield insights into the underlying 
pathophysiology that will enable new therapies to be developed.
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