Homeopathy 2017; 106(03): 181-190
DOI: 10.1016/j.homp.2017.05.001
Review
Copyright © The Faculty of Homeopathy 2017

Could the study of cavitation luminescence be useful in high dilution research?

François Hibou

Subject Editor:
Further Information

Publication History

Received03 October 2011
revised16 August 2016

accepted22 May 2017

Publication Date:
28 December 2017 (online)

Cavitation in agitated liquids has been discussed for over five decades as a phenomenon that could play a role in the appearance of structural changes in the solvent of potentised dilutions. However, its lack of specificity as well as the absence of experimental confirmation have so far confined the idea to theory. The light emission associated with cavitational bubble collapse can be used to detect and study cavitation in fluids. The phenomenon has been extensively studied when driven by ultrasound, where it is called sonoluminescence. Sonoluminescence spectra reflect extremely high temperature and pressure in the collapsing bubbles and are parameter sensitive. This article tries to examine whether, despite objections and difficulties, the detection or the study of cavitational luminescence in solutions during potentisation could be useful as a physical tool in high dilution research.

 
  • References

  • 1 Suslick K.S. Sonoluminescence and sonochemistry. In: Meyers R.A. (ed). Encyclopedia of physical science and technology. 3rd ed.. 2001. San Diego: Academic Press Inc.;
  • 2 Suslick K.S., Didenko Y., Fang M. et al. Acoustic cavitation and its chemical consequences. Philos Trans R Soc Lond A 1999; 357: 335-353.
  • 3 Suslick K.S., Price G.J. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 1999; 29: 295-326.
  • 4 Suslick K.S. Sonochemistry. Science 1990; 247: 1439-1445.
  • 5 Weninger K., Camara C., Putterman S. Energy focusing in a converging fluid flow: implications for sonoluminescence. Phys Rev Lett 1999; 10 (83) 2081-2084.
  • 6 Jarman P.D., Talor K.J. Light emission from cavitating water. Brit J Appl Phys 1964; 15 (03) 321.
  • 7 Farhat M., Chakravarty A., Field J.E. Luminescence from hydrodynamic cavitation. Proc R Soc A 2010 http://dx.doi.org/10.1098/rspa.2010.0134.
  • 8 Morison K.R., Hutchinson C.A. Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation. Ultrason Sonochem 2009; 16: 176-183.
  • 9 Thornycroft J.I., Barnaby S.W. Torpedo-boat destroyers. Min Proc Inst Chem Eng 1895; 122 (04) 51-69.
  • 10 Weitendorf E.A. On the history of propeller cavitation and cavitation tunnels. In: CAV 2001: Fourth International Symposium on Cavitation, June 20–23. 2001. Pasadena, CA, USA: California Institute of Technology; (Unpublished). http://caltechconf.library.caltech.edu/85/, http://resolver.caltech.edu/CAV2001:sessionB9.001.
  • 11 Versluis M., Schmitz B., von der Heydt A., Lohse D. How snapping shrimp snap: through cavitating bubbles. Science 2000; 289: 2114-2117.
  • 12 Rayleigh (Strutt JW, Lord-). On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 1917; 34: 94.
  • 13 Boericke G.W., Smith R.B. Modern instrumentation for the evaluation of homeopathic drug structure. J Am Inst Homeopath 1966; 59: 263-280.
  • 14 Boericke G.W., Smith R.B. Modern aspects of homeopathic research. J Am Inst Homeopath 1965; 58 (05/06) 158-167.
  • 15 Barnard G.O. Microdose paradox: a new concept. J Am Inst Homeopath 1965; 58: 205-212.
  • 16 Schulte J. Conservation of structure in aqueous ultra high dilutions. In: Endler P.C., Schulte J. (eds). Ultra high dilution, physiology and physics. 1994. Dordrecht, Netherlands: Kluwer Academic Publishers; 105-115.
  • 17 Del Giudice E. Is the “memory of water” a physical impossibility?. In: Endler P.C., Schulte J. (eds). Ultra high dilution – physiology and physics. 1994. Dordrecht, Netherlands: Kluwer Academic Publishers; 117-119.
  • 18 Anagnostatos G.S. Small water clusters (clathrates) in the preparation process of homoeopathy. In: Endler P.C., Schulte J. (eds). Ultra high dilution, physiology and physics. 1994. Dordrecht, Netherlands: Kluwer Academic Publishers; 121-128.
  • 19 Popp F.A. Some biophysical elements of homeopathy. In: Endler P.C., Schulte J. (eds). Ultra high dilution – physiology and physics. 1994. Dordrecht, Netherlands: Kluwer Academic Publishers.;
  • 20 Roy R., Tiller W.A., Bell I., Hoover M.R. The structure of liquid water; novel insights from materials research; potential relevance to homeopathy. Mater Res Innovations 2005; 9: 98-103 9-4: 1433-075X.
  • 21 Elia V., Napoli E., Germano R. The “Memory of water”: an almost deciphered enigma. Dissipative structures in extremely dilute aqueous solutions. Homeopathy 2007; 96: 163-169.
  • 22 Voeikov V.L. The possible role of active oxygen in the Memory of Water. Homeopathy 2007; 96: 196-201.
  • 23 Chaplin M.-F. The memory of water: an overview. Homeopathy 2007; 96: 143-150.
  • 24 Montagnier L., Aissa J., Ferris S., Montagnier J.-L., Lavallée C. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Sci Comput Life Sci 2009; 1: 81-90 http://dx.doi.org/10.1007/s12539-009-0036-7.
  • 25 Smith C.W. Electromagnetic and magnetic vector potential bioinformation and water. An update. Homeopathy 2015; 104: 301-304.
  • 26 Demangeat J.-L. Nanosized solvent superstructures in ultramolecular aqueous dilution: twenty years' research using water proton NMR relaxation. Homeopathy 2013; 102: 77-105.
  • 27 Demangeat J.-L. Nanobulles et superstructures nanométriques dans les hautes dilutions homéopathiques: le rôle crucial de la dynamisation et hypothèse de transfert de l'information. La Revue d'Homéopathie 2015; 6: 125-139.
  • 28 Bellavite P., Marzotto M., Olioso D., Moratti E., Conforti A. High-dilution effects revisited. 1. Physicochemical aspects. Homeopathy 2014; 103: 4-21.
  • 29 Schulte J., Endler P.C. Update on preliminary elements of a theory of ultra high dilutions. Homeopathy 2015; 104: 337-342.
  • 30 Rey L. Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride. Physica A 2003; 323: 67-74.
  • 31 Demangeat J.-L., Gries P., Poitevin B. et al. Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica-lactose prepared in glass material for pharmaceutical use. Appl Magn Reson 2004; 26: 465-481.
  • 32 Demangeat J.-L. NMR water proton relaxation in unheated and heated ultrahigh aqueous dilutions of histamine: evidence for an air-dependent supramolecular organization of water. J Mol Liq 2009; 144: 32-39.
  • 33 Demangeat J.L. NMR relaxation evidence for solute-induced nanosized superstructures in ultramolecular aqueous dilutions of silica–lactose. J Mol Liq 2010; 155: 71-79.
  • 34 Wolf U., Wolf M., Heusser P., Thurneysen A., Baumgartner S. Homeopathic preparations of quartz, sulfur, and copper sulfate assessed by UV-spectroscopy. Evid Based Complementary Alternat Med 2009; 2011:   http://dx.doi.org/10.1093/ecam/nep036. Article ID 692798.
  • 35 Baumgartner S., Wolf M., Skrabal P. et al. High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quartz, sulfur, and copper sulfate. Naturwissenschaften 2009; 96 (09) 1079-1089.
  • 36 Marschollek B., Nelle M., Wolf M., Baumgartner S., Heusser P., Wolf U. Effects of exposure to physical factors on homeopathic preparations as determined by ultraviolet light spectroscopy. Sci World J 2010; 10: 49-61 http://dx.doi.org/10.1100/tsw.2010.15.
  • 37 Klein S., Sandig A., Baumgartner S., Wolf U. Differences in median ultraviolet light transmissions of serial homeopathic dilutions of copper sulfate, Hypericum perforatum, and sulfur. Evid Based Complementary Alternat Med 2013; 2013:   http://dx.doi.org/10.1155/2013/370609. Article ID 370609.
  • 38 Elia V., Ausania G., Gentile F., Germano R., Napoli E., Niccoli M. Experimental evidence of stable water nanostructures in extremely dilute solutions, at standard pressure and temperature. Homeopathy 2014; 103: 44-50.
  • 39 Cartwright S. Solvatochromic dyes detect the presence of homeopathic potencies. Homeopathy 2016; 105: 55-65.
  • 40 Mahata C.R. Dielectric dispersion studies of some potentised homeopathic medicines reveal structured vehicle. Homeopathy 2013; 102: 262-267.
  • 41 Upadhyay R.P., Nayak C. Homeopathy emerging as nanomedicine. lnt J High Dilution Res 2011; 10: 299-310.
  • 42 Chikramane P.S., Suresh A., Bellare J.R., Kane S.G. Extreme homeopathic dilutions retain starting materials: a nanoparticulate perspective. Homeopathy 2010; 99: 231-242.
  • 43 Chikramane P.S., Kalita D., Suresh A., Kane S.G., Bellare J. Why extreme dilutions reach non-zero asymptotes: a nanoparticulate hypothesis based on froth flotation. Langmuir 2012; 28: 15864-15875 http://dx.doi.org/10.1021/la303477s.
  • 44 Chaplin M. Nanobubbles (ultra fine bubbles). http://www1.lsbu.ac.uk/water/nanobubble.html (Accessed 2016.08.13).
  • 45 Davenas E., Beauvais F., Amara J. et al. Human basophile degranulation triggered by very dilute antiserum against IgE. Nature 1988; 333: 816-818.
  • 46 Suslick K.S. Correspondence. Nature 1988; 334: 375.
  • 47 Auerbach D. Mass fluid and wave motion during the preparation of ultra-high dilutions. In: Endler P.C., Schulte J. (eds). Ultra high dilution, physiology and physics. 1994. Dordrecht: Kluwer Academic Publishers; 129-135.
  • 48 Poitevin B. Mécanismes d'action des medicaments à usage homéopathique. Données récentes et hypothèses: (1ère partie) mécanismes physicochimiques. Homéopathie européenne 1993; 1: 41-50.
  • 49 Anbar M. Cavitation during impact of liquid water on water: Geochemical implications. Science 1968; 161: 1343.
  • 50 Steiner R. In: Geisteswissenschaft und Medizin. GA 312, 11th lecture. 31.3. 1920. Rudolf Steiner Verlag, Taschenbuchausgabe 1990; 213
  • 51 Suslick K.S., Flannigan D.J. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 2008; 59: 659-683.
  • 52 Marinesco N., Trillat J.J. Action des ultrasons sur les plaques photographiques. Comptes_rendus_hebdomadaires_des_séances_de l'Académie_des_sciences 1933; 96: 858-860 Accessed 2016.07.27 from BNF_Gallica: http://gallica.bnf.fr.
  • 53 Frenzel H., Schultes H. Luminescenz im ultraschallbeschickten Wasser. Zeitschr Phys Chem 1934; 27: 421-424.
  • 54 Didenko Y., McNamara W., Suslick K.S. Molecular emission from single bubble sonoluminescence. Nature 2000; 407: 877-879.
  • 55 Crum L. Resource paper: sonoluminescence. J Acoust Soc Am October 2015; 138 (04) 2181-2205 http://dx.doi.org/10.1121/1.4929687.
  • 56 Jarman P.D., Taylor K.J. Light emission from cavitating water. Brit J Appl Phys 1964; 15: 321-322.
  • 57 Flint E., Suslick K.S. Sonoluminescence from nonaqueous liquids: emission from small molecules. J Am Chem Soc 1989; 11 (01) 6987-6992.
  • 58 Brenner M., Hilgenfelt S., Lohse D. Single-bubble sonoluminescence. Rev Mod Phys 2002; 74 (02) 425-485.
  • 59 Nikitenko S. Plasma formation during acoustic cavitation: toward a new paradigm for sonochemistry. Adv Phys Chem 2014; 2014:   http://dx.doi.org/10.1155/2014/173878. Article ID 173878.
  • 60 Becker L., Bada J., Kemper K., Suslick K.S. The sonoluminescence spectrum of seawater. Mar Chem 1992; 40: 315-320.
  • 61 Hiller R., Weninger K., Putterman S., Barber B. Effect of noble gas doping on single bubble sonoluminescence. Science 1994; 266: 248-250.
  • 62 Didenko Y., McNamara W., Suslick K.S. Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Phys Rev Lett 2000; 84 (04) 777-780.
  • 63 Flannigan D., Hopkins S., Camara C., Putterman S., Suslick K.S. Measurement of pressure and density inside a single sonoluminescing bubble. Phys Rev Lett 2006; 96: 204301.
  • 64 Flannigan D.J., Suslick K.S. Plasma formation and temperature measurement during single-bubble cavitation. Nature 3 March 2005; 434:  
  • 65 Tsiklauri D. Two component radiation model of the sonoluminescing bubble. Phys Rev E 1997; 56: R6245-R6247.
  • 66 Flannigan D.J., Suslick K.S. Inertially confined plasma in an imploding bubble. Nature Phys 2010; 6: 598-601 http://dx.doi.org/10.1038/nphys1701.
  • 67 Taleyarkhan R.P., West C.D., Cho J.S., Lahey Jr. R.T., Nigmatulin R.I., Block R.C. Evidence for Nuclear Emissions During Acoustic Cavitation. Science 2002; 295: 1868.
  • 68 Taleyarkhan R.P., Cho J.S., West C.D., Lahey Jr. R.T., Nigmatulin R.I., Block R.C. Additional evidence of nuclear emissions during acoustic cavitation. Phys Rev E 2004; 69: 036109.
  • 69 Taleyarkhan R.P., West C.D., Lahey Jr. R.T., Nigmatulin R.I., Block R.C., Xu Y. Nuclear Emissions During Self-Nucleated Acoustic Cavitation. Phys Rev Lett 2006; 96: 034301.
  • 70 Naranjo B. Comment on “nuclear emissions during self-nucleated acoustic cavitation”. Phys Rev Lett 2006; Oct 6; 97 (14) 149403.
  • 71 Camara C.G., Hopkins S.D., Suslick K.S., Putterman J.S. Upper bound for neutron emission from sonoluminescing bubbles in deuterated acetone. Phys Rev Lett 2007; 98: 064301.
  • 72 Shapira D., Saltmarsh M. Nuclear fusion in collapsing bubbles – Is it there? An attempt to repeat the observation of nuclear emissions from sonoluminescence. Phys Rev Lett 2002; 89: 104302.
  • 73 NatureNews. Bubble fusion: silencing the hype. Nature 8 March 2006 http://dx.doi.org/10.1038/news060306-1.
  • 74 Samuel Reich E. Is bubble fusion simply hot air. Nature 8 March 2006 http://dx.doi.org/10.1038/news060306-2.
  • 75 Bubble bursts for table-top fusion. Nature 8 March 2006 http://dx.doi.org/10.1038/news060306-3.
  • 76 Alexeev B.V. To the non-local theory of cold nuclear fusion. R Soc Open Sci 2014; 1: 140015 http://dx.doi.org/10.1098/rsos.140015.
  • 77 Flannigan D., Suslick K.S. Molecular and atomic emission during single bubble sonoluminescence in concentrated sulphuric acid. Acoust Res Lett Online July 2005; 6 (03)  
  • 78 Flannigan D., Suslick K.S. Plasma quenching by air during single bubble sonoluminescence. J Phys Chem A Lett 2006; 110: 9315-9318.
  • 79 Matula T., Roy R., Mourad P., McNamara W., Suslick K.S. Comparison of multibubble and single bubble sonoluminescence spectra. Phys Rev Lett 1995; 13 (75) 2602-2605.
  • 80 Eddingsaas N.C., Suslick K.S. Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. J Am Chem Soc 2007; 129:   3838–3829.
  • 81 Xu H., Edingsaas N., Suslick K.S. Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 2009; 131: 6060-6061.
  • 82 Jarman P.D. Measurements of sonoluminescence from pure liquids and some aqueous solutions. Proc Phys Soc (London) 1959; 73: 628.
  • 83 Young F.R. Sonoluminescence. CRC Press; 2005. ISBN 0-8493-2439-4. Accessed from: http://www.scribd.com/doc/7343552/sonoluminescence.
  • 84 Ashokkumar M., Hall R., Mulvaney P., Grieser F. Sonoluminescence from aqueous alcohol and surfactant solutions. J Phys Chem B 1997; 101: 10845-10850.
  • 85 Ashokkumar M., Grieser F. A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. J Am Chem Soc 2005; 127: 5326-5327.
  • 86 Hayashi Y., Choi P.K. Effects of alcohols on multi-bubble sonoluminescence spectra. Ultrasonics 2006; 44: e421-e425.
  • 87 Tögel R., Hilgenfeldt S., Lohse D. Squeezing alcohols into sonoluminescing bubbles: the universal role of surfactants. Phys Rev Lett 2000; 84 (11) 2509-2512.
  • 88 Lohse D., Schmitz B., Versluis M. Snapping shrimp make flashing bubbles. Brief communications. Nature 2001; 413: 477-478.
  • 89 Byun K.T., Kwak H.Y. Degradation of methylene blue under multibubble sonoluminescence conditions. J Photochem Photobiol A Chem 2005; 75: 45-50.
  • 90 Brizzi M., Elia V., Trebbi G., Nani D., Peruzzi M., Betti L. The efficacy of ultramolecular aqueous dilutions on a wheat germination model as a function of heat and aging-time. e-CAM 2009 http://dx.doi.org/10.1093/ecam/nep217.
  • 91 Chirumbolo S., Brizzi M., Ortolani R., Vella A., Bellavite P. Inhibition of CD203c membrane up-regulation in human basophils by high dilutions of histamine: a controlled replication study. Inflamm Res 2009 http://dx.doi.org/10.1007/s00011-009-0044-4.
  • 92 Jäger T., Scherr C., Wolf U., Simon M., Heusser P., Baumgartner S. Investigation of arsenic-stressed yeast (Saccharomyces cerevisiae) as a bioassay in homeopathic basic research. Sci World J 2011; 11: 568-583 TSW Holistic Health & Medicine.
  • 93 Boiron J., Cier A. Influence de different facteurs physiques sur l'action pharmacodynamique des dilutions infinitésimales. Annales homéopathiques françaises 1971 (07): 549-560.
  • 94 Baranger P., Filer M.K. Contributions à l'étude des facteurs physiques pouvant influer sur l'efficacité thérapeutiques des hautes dilutions de géraniol. Annales homéopathiques françaises 1971 (07): 561-570.