Synlett 2022; 33(19): 1917-1924
DOI: 10.1055/a-1930-7294
letter

Oxone-Promoted Cyclization/Hydrolysis of 1,5-Enenitriles Initiated via Direct C(sp3)–H Oxidative Functionalization: Access to Pyrrolidine-2,4-diones

Yu-Tao Guan
a   School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. of China
,
Jiao-Zhe Li
a   School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. of China
,
Xue-Er Cai
a   School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. of China
,
Sen-Jie Hu
a   School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. of China
,
Jun-Hao Zhang
a   School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. of China
,
Ke-Wei Lei
a   School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. of China
,
Hongxin Liu
b   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China
,
Wen-Ting Wei
a   School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. of China
› Author Affiliations
We thank the Fundamental Research Funds for the Provincial Universities of Zhejiang (SJLY2021004) , and K. C. Wong Education Foundation (Hong Kong) for financial support.


Abstract

A novel method for assembling pyrrolidine-2,4-diones from 1,5-enenitriles and acetone/acetonitrile via a cyclization/hydrolysis has been established under metal-catalyst- and base-free conditions, with Oxone as a green oxidant and H2O as an additive at 90–110 ℃. This strategy is highlighted by cyclization/hydrolysis of alkyl cyanides, achieving direct C(sp3)–H oxidative functionalization, and giving full conversion of the substrates with excellent functional group compatibility.

Supporting Information



Publication History

Received: 22 July 2022

Accepted after revision: 25 August 2022

Accepted Manuscript online:
25 August 2022

Article published online:
11 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected reviews, see:
    • 1a Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 1b Guo W, Wang Q, Zhu J. Chem. Soc. Rev. 2021; 50: 7359
    • 1c Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2017; 56: 2
    • 1d Karimov RR, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 4234
    • 1e Luo W, Yang K, Yin B. Chin. J. Org. Chem. 2020; 40: 2290

      For selected reviews and papers, see:
    • 2a Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
    • 2b Wang K, Zhang J, Hu R, Liu C, Bartholome TA, Ge H, Li B. ACS Catal. 2022; 12: 2796
    • 2c Lapuh MI, Mazeh S, Besset T. ACS Catal. 2020; 10: 12898
    • 2d Gabriela O.-M. Science 2020; 369: 34
    • 2e Zhou J, Wang S, Duan W, Lian Q, Wei W. Green Chem. 2021; 23: 3261

      For a selected review and papers, see:
    • 3a Liu B, Romine AM, Rubel CZ, Engle KM, Shi B.-F. Chem. Rev. 2021; 121: 14957
    • 3b Li Y.-M, Sun M, Wang H.-L, Tian Q.-P, Yang S.-D. Angew. Chem. Int. Ed. 2013; 52: 3972
    • 3c Jia Y.-X, Kundig EP. Angew. Chem. Int. Ed. 2009; 48: 1636
    • 3d Lan X.-W, Wang N.-X, Zhang W, Wen J.-L, Bai C.-B, Xing Y, Li Y.-H. Org. Lett. 2015; 17: 4460
    • 3e Pan C.-D, Han J, Zhu C.-J. Sci. China Chem. 2014; 57: 1172
    • 3f Huang X.-J, Qin F.-H, Liu Y, Wu S.-P, Li Q, Wei W.-T. Green Chem. 2020; 22: 3952

      For selected papers, see:
    • 4a Antonchick AP, Burgmann L. Angew. Chem. Int. Ed. 2013; 52: 3267
    • 4b Xie J, Jiang H, Cheng Y, Zhu C. Chem. Commun. 2012; 48: 979
    • 4c Pan C, Huang B, Hu W, Feng X, Yu J.-T. J. Org. Chem. 2016; 81: 2087
    • 4d Lin J.-P, Zhang F.-H, Long Y.-Q. Org. Lett. 2014; 16: 2822
    • 4e Ma D, Pan J, Yin L, Xu P, Gao Y, Yin Y, Zhao Y. Org. Lett. 2018; 20: 3455
    • 4f Fang H, Zhao J, Ni S, Mei H, Han J, Pan Y. J. Org. Chem. 2015; 80: 3151
    • 4g Xia D, Li Y, Miao T, Li P, Wang L. Green Chem. 2017; 19: 1732
    • 4h Paul S, Guin J. Green Chem. 2017; 19: 2530
    • 4i Chen Q, Yu G, Wang X, Ou Y, Huo Y. Green Chem. 2019; 21: 798

      For selected papers, see:
    • 5a Hu G, Shan C, Chen W, Xu P, Gao Y, Zhao Y. Org. Lett. 2016; 18: 6066
    • 5b Luo J, Kar S, Rauch M, Montag M, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2021; 143: 17284

      For a selected review and a paper, see:
    • 6a Hussain H, Green IR, Ahmed I. Chem. Rev. 2013; 113: 3329
    • 6b Madabhushi S, Jillella R, Sriramoju V, Singh R. Green Chem. 2014; 16: 3125

      For selected papers, see:
    • 7a Zhao M, Lu W. Org. Lett. 2017; 19: 4560
    • 7b Shuler WG, Johnson SL, Hilinski MK. Org. Lett. 2017; 19: 4790
    • 7c Adams AM, Du Bois J. Chem. Sci. 2014; 5: 656
    • 7d Liu Y, Wang Q.-L, Chen Z, Zhou Q, Li H, Xu W.-Y, Xiong B.-Q, Tang K.-W. J. Org. Chem. 2019; 84: 5413
    • 7e Meng Y.-N, Kang Q.-Q, Cao T.-T, Song S.-Z, Ge G.-P, Li Q, Wei W.-T. ACS Sustainable Chem. Eng. 2019; 7 18738

      For selected papers, see:
    • 8a Hao X, Yu J, Wang Y, Connolly JA, Liu Y, Zhang Y, Yu L, Cen S, Goss RJ. M, Gan M. Org. Lett. 2020; 22: 9346
    • 8b Gupta V, Yang J, Liebler DC, Carroll KS. J. Am. Chem. Soc. 2017; 139: 5588
    • 8c Gui C, Li Q, Mo X, Qin X, Ma J, Ju J. Org. Lett. 2015; 17: 628
    • 8d Farran D, Toupet L, Martinez J, Dewynter G. Org. Lett. 2007; 9: 4833
    • 8e Al-Zharani M, Al-Eissa MS, Rudayni HA, Ali D, Alarifi S, SurendraKumar R, Idhayadhulla A. Saudi J. Biol. Sci. 2021; 12: 3
    • 8f Lowery CA, Park J, Gloeckner C, Meijler MM, Mueller RS, Boshoff HI, Ulrich RL, Barry CE, Bartlett DH, Kravchenko VV, Kaufmann GF, Janda KD. J. Am. Chem. Soc. 2009; 131: 14473

      For selected papers, see:
    • 9a Iwata Y, Maekawara N, Tanino K, Miyashita M. Angew. Chem. Int. Ed. 2005; 44: 1532
    • 9b Pan X, Liu Z. Org. Lett. 2019; 21: 2393
    • 9c Chen M, Geng C.-W, Han L, Liu Y, Yu Y.-K, Lu A.-M, Yang C.-L, Li G.-H. New J. Chem. 2021; 45: 5621
    • 9d Cheng X, Liang F, Shi F, Zhang L, Liu Q. Org. Lett. 2008; 11: 93

      For a selected review and papers, see:
    • 10a Sun K, Lv Q.-Y, Lin Y.-W, Yu B, He W.-M. Org. Chem. Front. 2021; 8: 445
    • 10b Xia W.-J, Fan T.-G, Zhao Z.-W, Chen X, Wang X.-X, Li Y.-M. Org. Lett. 2021; 23: 6158
    • 10c Liu Y.-Y, Yang X.-H, Song R.-J, Luo S, Li J.-H. Nat. Commun. 2017; 8: 14720
    • 10d Ha TM, Chatalova-Sazepin C, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 9249
    • 10e Chu X.-Q, Meng H, Zi Y, Xu X.-P, Ji S.-J. Org. Chem. Front. 2015; 2: 216
    • 10f Miura T, Harumashi T, Murakami M. Org. Lett. 2006; 9: 741
    • 10g Sakai T, Danheiser RL. J. Am. Chem. Soc. 2010; 132: 13203

      For selected papers, see:
    • 11a Li Y.-M, Wang S.-S, Yu F, Shen Y, Chang K.-J. Org. Biomol. Chem. 2015; 13: 5376
    • 11b Fu H, Wang S.-S, Li Y.-M. Adv. Synth. Catal. 2016; 358: 3616
    • 11c Wang S.-S, Fu H, Shen Y, Sun M, Li Y.-M. J. Org. Chem. 2016; 81: 2920
    • 11d Jiang Y.-Q, Li J, Feng Z.-W, Xu G.-Q, Shi X, Ding Q.-J, Li W, Ma C.-H, Yu B. Adv. Synth. Catal. 2020; 362: 2609
    • 11e Wang X, Guo S, Zhang Y, Zhang Z, Zhang G, Ye Y, Sun K. Adv. Synth. Catal. 2021; 363: 3290
    • 11f Zhu X.-T, Zhao Q, Liu F, Wang A.-F, Cai P.-J, Hao W.-J, Tu S.-J, Jiang B. Chem. Commun. 2017; 53: 6828
    • 11g Zhu X.-T, Lu Q.-L, Wang X, Zhang T.-S, Hao W.-J, Tu S.-J, Jiang B. J. Org. Chem. 2018; 83: 9890
    • 11h Zhang Y, Sun K, Lv Q, Chen X, Qu L, Yu B. Chin. Chem. Lett. 2019; 30: 1361
    • 11i Xi J.-M, Sun Y.-H, Li W.-C, Wu Y.-H, Wei Z.-L, Liao W.-W. Org. Lett. 2022; 24: 1110
    • 11j Chen D, Ji M, Zhu C. Chem. Commun. 2019; 55: 7796
    • 11k Shi S, Zheng Z, Zhang Y, Yang Y, Ma D, Gao Y, Liu Y, Tang G, Zhao Y. Org. Lett. 2021; 23: 9348

      For selected papers, see:
    • 12a Corey EJ, Pyne SG. Tetrahedron Lett. 1983; 24: 2821
    • 12b Alonso RA, Burgey CS, Rao BV, Vite GD, Vollerthun R, Zottola MA, Fraser-Reid B. J. Am. Chem. Soc. 1993; 115: 6666
    • 12c Tsang R, Fraser-Reid B. J. Am. Chem. Soc. 1986; 108: 2116
    • 12d Clive DL. J, Beaulieu PL, Set L. J. Org. Chem. 1984; 49: 1313
    • 12e Sulsky R, Gougoutas JZ, DiMarco J, Biller SA. J. Org. Chem. 1999; 64: 5504
    • 12f Molander GA, Wolfe CN. J. Org. Chem. 1998; 63: 9031
  • 13 General Procedure To a Schlenk tube were added 1,5-enenitrile 1 (0.2 mmol), Oxone (2.0 equiv), H2O (10.0 equiv), and acetone or acetonitrile 2 (1.0 mL). Then the tube was stirred at 90 °C or 110 °C, sealed in air for the indicated time until complete consumption of starting material as monitored by TLC and/or GC–MS analysis. After the reaction was finished, the solution was concentrated under reduced pressure, and the mixture was purified by flash column chromatography over silica gel (hexane/ethyl acetate = 2:1) to afford the desired product 3 and was analyzed by 1H NMR and 13C NMR spectroscopy (see the Supporting Information). Typical Data for Representative Compound 1-(4-Methoxyphenyl)-3-methyl-3-(3-oxobutyl)pyrrolidine-2,4-dione (3a) Yellow oil (0.0509 g, 88% yield). 1H NMR (400 MHz, CDCl3): δ = 7.56–7.54 (m, 2 H), 6.96–6.93 (m, 2 H), 4.33–4.21 (m, 2 H), 3.82 (s, 3 H), 2.55 (t, J = 7.2 Hz, 2 H), 2.12 (s, 3 H), 2.08–2.03 (m, 2 H), 1.33 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 209.0, 207.3, 173.5, 157.2, 130.9, 122.3, 114.3, 56.3, 55.5, 51.1, 38.0, 29.8, 28.9, 19.8. HRMS (ESI): m/z calcd for C16H20NO4 [M + H]+: 290.1387; found: 290.1381.