Synlett 2024; 35(03): 279-284
DOI: 10.1055/a-2107-5396
cluster
Organic Chemistry Under Visible Light: Photolytic and Photocatalytic Organic Transformations

Sulfoximines as S-Aryl Surrogates: A Photocatalytic Rapid, Metal-Free, Mild Protocol to Access 3-Arylsulfenyl Indoles

V R Padma Priya
,
A Antony Haritha Mercy
,
K Natarajan
,
The authors are grateful to CSIR New Delhi (02(0445)/21/EMR-II) and DST-SERB (ECR/2018/001462) for a research grant and a fellowship. The DST-FIST program is acknowledged for providing the HRMS facility at the Dept. of Chemistry, NIT-Trichy. V.R.P.P. and A.A.H.M. are grateful to the NIT-Trichy (MHRD) and CSIR-New Delhi, respectively, for their fellowships.


Abstract

Sulfoximines as S-aryl surrogates permit the preparation of 3-arylsulfenylindoles through reaction with indoles in the presence of I2 under visible-light irradiation. This environmentally friendly approach is fast, mild, metal-, photocatalyst-, additive-, and oxidant-free, and it provides the desired products in moderate to good yields with a wide substrate scope.

Supporting Information



Publication History

Received: 18 April 2023

Accepted after revision: 07 June 2023

Accepted Manuscript online:
07 June 2023

Article published online:
31 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Lücking U. Angew. Chem. Int. Ed. 2013; 52: 9399
    • 1b Andresini M, Tota A, Degennaro L, Bull JA, Luisi R. Chem. Eur. J. 2021; 27: 17293
  • 2 Mäder P, Kattner L. J. Med. Chem. 2020; 63: 14243
  • 3 Han Y, Xing K, Zhang J, Tong T, Shi Y, Cao H, Yu H, Zhang Y, Liu D, Zhao L. Eur. J. Med. Chem. 2021; 209: 112885
  • 4 Bull JA, Degennaro L, Luisi R. Synlett 2017; 28: 2525
  • 5 Ghosh P, Ganguly B, Das S. Asian J. Org. Chem. 2020; 9: 2035
  • 6 Li Z, Yu H, Bolm C. Angew. Chem. Int. Ed. 2017; 56: 9532
    • 7a Thanikachalam PV, Maurya RK, Garg V, Monga V. Eur. J. Med. Chem. 2019; 180: 562
    • 7b Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
    • 7c Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
    • 8a Choudhury P, Roy B, Basu B. Asian J. Org. Chem. 2017; 6: 1569
    • 8b Yi S, Li M, Mo W, Hu X, Hu B, Sun N, Jin L, Shen Z. Tetrahedron Lett. 2016; 57: 1912
    • 8c Li W, Wang H, Liu S, Feng H, Benassi E, Qian B. Adv. Synth. Catal. 2020; 362: 2666
  • 9 Mitamura T, Iwata K, Ogawa A. J. Org. Chem. 2011; 76: 3880
  • 10 Han D, Li Z, Fan R. Org. Lett. 2014; 16: 6508
  • 11 Chitra S, Paul N, Muthusubramanian S, Manisankar P. RSC Adv. 2012; 2: 1432
  • 12 Liu J, Li P, Chen W, Wang L. Chem. Commun. 2012; 48: 10052
  • 13 Yadav JS, Reddy BV. S, Reddy YJ, Praneeth K. Synthesis 2009; 1520
  • 14 Maeda Y, Koyabu M, Nishimura T, Uemura S. J. Org. Chem. 2004; 69: 7688
    • 15a Schlosser KM, Krasutsky AP, Hamilton HW, Reed JE, Sexton K. Org. Lett. 2004; 6: 819
    • 15b Yadav JS, Reddy BV. S, Reddy YJ. Tetrahedron Lett. 2007; 48: 7034
    • 15c Liu Y, Zhang Y, Hu C, Wan J.-P, Wen C. RSC Adv. 2014; 4: 35528
    • 15d Sorabad GS, Maddani MR. Asian J. Org. Chem. 2019; 8: 1336
    • 15e Guo W, Tan W, Zhao M, Tao K, Zheng L.-Y, Wu Y, Chen D, Fan X.-L. RSC Adv. 2017; 7: 37739
  • 16 Zhang H, Bao X, Song Y, Qu J, Wang B. Tetrahedron 2015; 71: 8885
  • 17 Han D.-Y, Liu X.-P, Li R.-P, Xu D.-Z. J. Org. Chem. 2021; 86: 10166
  • 18 Ge W, Wei Y. Synthesis 2012; 44: 934
    • 19a Azeredo JB, Godoi M, Martins GM, Silveira CC, Braga AL. J. Org. Chem. 2014; 79: 4125
    • 19b Huang D, Chen J, Dan W, Ding J, Liu M, Wu H. Adv. Synth. Catal. 2012; 354: 2123
    • 19c Sang P, Chen Z, Zou J, Zhang Y. Green Chem. 2013; 15: 2096
  • 20 Li Z, Hong J, Zhou X. Tetrahedron 2011; 67: 3690
  • 21 Ge W, Wei Y. Green Chem. 2012; 14: 2066
  • 22 Zhou X, Li X. RSC Adv. 2014; 4: 1241
  • 23 Fang X.-L, Tang R.-Y, Zhong P, Li J.-H. Synthesis 2009; 4183
    • 24a Chen M, Huang Z.-T, Zheng Q.-Y. Chem. Commun. 2012; 48: 11686
    • 24b He Y, Jiang J, Bao W, Deng W, Xiang J. Tetrahedron Lett. 2017; 58: 4583
  • 25 Kumaraswamy G, Raju R, Narayanarao V. RSC Adv. 2015; 5: 22718
  • 26 Rao H, Wang P, Wang J, Li Z, Sun X, Cao S. RSC Adv. 2014; 4: 49165
  • 27 Xiao F, Xie H, Liu S, Deng G.-J. Adv. Synth. Catal. 2014; 356: 364
  • 28 Liu C.-R, Ding L.-H. Org. Biomol. Chem. 2015; 13: 2251
  • 29 Rahaman R, Devi N, Bhagawati JR, Barman P. RSC Adv. 2016; 6: 18929
  • 30 Yang F.-L, Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
  • 31 Wang F.-X, Zhou S.-D, Wang C, Tian S.-K. Org. Biomol. Chem. 2017; 15: 5284
    • 32a Hamel P, Préville P. J. Org. Chem. 1996; 61: 1573
    • 32b Raban M, Chern L.-J. J. Org. Chem. 1980; 45: 1688
  • 33 Tudge M, Tamiya M, Savarin C, Humphrey GR. Org. Lett. 2006; 8: 565
  • 34 Marcantoni E, Cipolletti R, Marsili L, Menichetti S, Properzi R, Viglianisi C. Eur. J. Org. Chem. 2013; 2013: 132
  • 35 Guo Y.-J, Tang R.-Y, Li J.-H, Zhong P, Zhang X.-G. Adv. Synth. Catal. 2009; 351: 2615
    • 36a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 36b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 36c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 36d Priya VR. P, Natarajan K, Nandi GC. Tetrahedron 2022; 111: 132711
  • 37 Kumar A, Gupta G, Srivastava S. Org. Lett. 2011; 13: 6366
  • 38 Wei Y, Chu H, Tian Y, Chen B, Wu K, Wang J, Yang X, Cai B, Zhang Y, Zhao J. Adv. Energy Mater. 2019; 9: 1900612
  • 39 3-[(4-Chlorophenyl)sulfanyl]-1H-indole (3aa); Typical Procedure A clean 20 mL Schlenk tube was charged with sulfoximine 1a (32 mg, 0.1687 mmol, 1.0 equiv), indole (2a; 20 mg, 0.1707 mmol, 1.0 equiv), and I2 (43 mg, 0.1694 mmol, 1.0 equiv) in EtOH (1 mL). The mixture was stirred at RT under blue LED irradiation (456 nm/50 W) for 10 mins. When the reaction was complete (TLC; reaction time 10–15 min, depending on the substrate), the solvent was removed in vacuo and the product was purified by column chromatography [silica gel (100–200 mesh), 2–10% EtOAc–hexane] to give a white solid; yield: 36 mg (81%); mp 130–131 °C. 1H NMR (500 MHz, CDCl3): δ = 8.38 (br s, 1 H), 7.56 (d, J = 8.0 Hz, 1 H), 7.45 (d, J = 3.0 Hz, 1 H), 7.42 (d, J = 8.0 Hz, 1 H), 7.28–7.23 (m, 1 H), 7.16 (td, J = 8.0, 1.0 Hz, 1 H), 7.11–7.08 (m, 2 H), 7.02–6.99 (m, 2 H). 13C NMR (126 MHz, CDCl3): δ = 137.9, 136.6, 130.8, 130.6, 128.9, 128.8, 127.2, 123.3, 121.2, 119.6, 111.8, 102.6. HRMS (ESI): m/z [M + H]+ calcd for C14H11ClNS: 260.0295; found: 260.0294.