Ultraschall Med 2023; 44(06): e284-e295
DOI: 10.1055/a-2122-6182
Original Article

Sonographic demonstration of the sulci and gyri on the convex surface in normal fetuses using 3D-ICRV rendering technology

Sonografische Darstellung der Sulci und Gyri auf der konvexen Oberfläche bei normalen Feten mittels 3D-ICRV-Rendering-Technologie
Zhixuan Chen
1   Shenzhen Maternity & Child Healthcare Hospital,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China (Ringgold ID: RIN70570)
,
Ya Ma
2   Department of Ultrasound, The First People’s Hospital of Lanzhou City, Lanzhou, Lanzhou, China
,
Huaxuan Wen
3   Department of Ultrasound, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
,
Yimei Liao
3   Department of Ultrasound, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
,
yan Ouyang
4   Ultrasound Department,  Institute of Reproductive and stem cell Engineering, Central South University Xiangya Road, Changsha, Hunan Changsha, CN 410000, Changsha, China
,
BoCheng Liang
1   Shenzhen Maternity & Child Healthcare Hospital,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China (Ringgold ID: RIN70570)
,
Meiling Liang
3   Department of Ultrasound, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
,
5   Ultrasonic Diagnosis, Shenzhen Maternity and Childcare Hospital, Shenzhen, China (Ringgold ID: RIN248258)
› Author Affiliations
Supported by: Shenzhen Science and Technology project JCYJ20210324130812035,JCYJ20220530155208018
Supported by: Lanzhou Science and Technology project 2021-1-113
Supported by: The National Key Research and Development Program 2022YFF0606301

Abstract

Purpose To demonstrate morphological alteration of the sulci and gyri on the convex surface in normal fetuses using innovative three-dimensional inversion and Crystalvue and Realisticvue (3D-ICRV) rendering technology.

Materials and Methods 3D fetal brain volumes were collected from low-risk singleton pregnancies between 15+0 and 35+6 gestational weeks. Volumes were acquired from the transthalamic axial plane by transabdominal ultrasonography and were then post-processed with Crystalvue, Realisticvue rendering software and inversion mode. Volume quality was assessed. The anatomic definition of the sulci and gyri was determined according to location and orientation. The morphology alteration and sulcus display rates were recorded in sequential order of gestational weeks. Follow-up data were collected in all cases.

Results 294 of 300 fetuses (294 brain volumes) (98%) with qualified fetal brain volumes were included (n=294, median 27 gestational weeks). 6 fetuses with unsatisfactory 3D-ICRV image quality were excluded. The morphology of the sulci and gyri on the brain convex surface could be demonstrated clearly on 3D-ICRV images. The Sylvian fissure was the first structure to be recognized. From 25 to 30 weeks, other sulci and gyri became visible. An ascending trend in the display rate of the sulci was found in this period. Follow-up showed no detectable anomalies.

Conclusion 3D-ICRV rendering technology is different from traditional 3D ultrasound. It can provide vivid and intuitive prenatal visualization of the sulci and gyri on the brain surface. Moreover, it may offer new ideas for neurodevelopment exploration.

Zusammenfassung

Ziel Demonstration der morphologischen Veränderung der Sulci und Gyri auf der konvexen Oberfläche bei normalen Feten mittels innovativer dreidimensionaler Inversion und der Technologien „Crystalvue“ und „Realisticvue (3D-ICRV) Rendering“.

Material und Methoden 3D-Volumina des fetalen Gehirns wurden bei Einlingsschwangerschaften mit geringem Risiko zwischen den Schwangerschaftswochen 15+0 und 35+6 erhoben. Die Volumina wurden aus der transthalamischen Axialebene mittels transabdominaler Sonografie erfasst und anschließend mit Crystalvue, der Realisticvue-Rendering-Software und dem Inversionsmodus nachbearbeitet. Die Volumenqualität wurde bewertet. Die Sulci und Gyri wurden anhand ihrer Lage und Ausrichtung anatomisch definiert. Die morphologischen Veränderungen und die Darstellungsraten der Sulci wurden aufeinanderfolgend nach Schwangerschaftswochen aufgezeichnet. In allen Fällen wurden Follow-up-Daten erhoben.

Ergebnisse 294 von 300 Feten (294 Gehirnvolumina; 98%) mit qualifizierten fetalen Gehirnvolumina wurden eingeschlossen (n=294, Median 27 Schwangerschaftswochen). Sechs Feten mit unbefriedigender 3D-ICRV-Bildqualität wurden ausgeschlossen. Die Morphologie der Sulci und Gyri auf der konvexen Oberfläche des Gehirns konnte auf 3D-ICRV-Bildern deutlich dargestellt werden. Die Sylvische Furche war die erste Struktur, die erkannt wurde. Ab der 25.–30. Woche wurden weitere Sulci und Gyri sichtbar. In diesem Zeitraum zeigte sich ein steigender Trend in der Darstellungsrate der Sulci. Im Follow-up ergaben sich keine erkennbaren Anomalien.

Schlussfolgerung Die 3D-ICRV-Rendering-Technologie unterscheidet sich vom herkömmlichen 3D-Ultraschall. Sie ermöglicht eine anschauliche und intuitive pränatale Visualisierung der Sulci und Gyri auf der Hirnoberfläche. Außerdem kann sie neue Impulse für die Erforschung der neurologischen Entwicklung geben.

Supporting information



Publication History

Received: 07 April 2022

Accepted after revision: 04 July 2023

Accepted Manuscript online:
04 July 2023

Article published online:
04 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Cohen-Sacher B, Lerman-Sagie T, Lev D. et al. Sonographic developmental milestones of the fetal cerebral cortex: a longitudinal study. Ultrasound in Obstetrics and Gynecology 2006; 27 (05) 494-502 DOI: 10.1002/uog.2757. (PMID: 16619380)
  • 2 Ruoss K, Lovblad K, Schroth G. et al. Brain development (sulci and gyri) as assessed by early postnatal MR imaging in preterm and term newborn infants. Neuropediatrics 2001; 32 (02) 69-74 DOI: 10.1055/s-2001-13871. (PMID: 11414646)
  • 3 Garel C, Chantrel E, Brisse H. et al. Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 2001; 22 (01) 184-189 (PMID: 11158907)
  • 4 Zhang Z, Liu S, Lin X. et al. Development of fetal cerebral cortex: assessment of the folding conditions with post-mortem magnetic resonance imaging. Int J Dev Neurosci 2010; 28 (06) 537-543
  • 5 Zhang Z, Hou Z, Lin X. et al. Development of the fetal cerebral cortex in the second trimester: assessment with 7T postmortem MR imaging. AJNR Am J Neuroradiol 2013; 34 (07) 1462-1467
  • 6 Naidich TP, Grant JL, Altman N. et al. The developing cerebral surface. Preliminary report on the patterns of sulcal and gyral maturation--anatomy, ultrasound, and magnetic resonance imaging. Neuroimaging Clin N Am 1994; 4 (02) 201-240 (PMID: 8081626)
  • 7 Dubois J, Benders M, Cachia A. et al. Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 2008; 18 (06) 1444-1454 DOI: 10.1093/cercor/bhm180. (PMID: 17934189)
  • 8 Rolo LC, Araujo Junior E, Nardozza LM. et al. Development of fetal brain sulci and gyri: assessment through two and three-dimensional ultrasound and magnetic resonance imaging. Arch Gynecol Obstet 2011; 283 (02) 149-158
  • 9 Paladini D, Quarantelli M, Sglavo G. et al. Accuracy of neurosonography and MRI in clinical management of fetuses referred with central nervous system abnormalities. Ultrasound Obstet Gynecol 2014; 44 (02) 188-196
  • 10 Malinger G, Paladini D, Haratz KK. et al. ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 1: performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet Gynecol 2020; 56 (03) 476-484 DOI: 10.1002/uog.22145. (PMID: 32870591)
  • 11 Huang XN, Zhang Y, Feng WW. Reliability and validity of warning signs checklist for screening psychological, behavioral and developmental problems of children. Zhonghua Er Ke Za Zhi 2017; 55 (06) 445-450 DOI: 10.3760/cma.j.issn.0578-1310.2017.06.010. (PMID: 28592013)
  • 12 Chi JG, Dooling EC, Gilles FH. Gyral development of the human brain. Annals of neurology 1977; 1 (01) 86-93 DOI: 10.1002/ana.410010109. (PMID: 560818)
  • 13 Kinoshita Y, Okudera T, Tsuru E. et al. Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses. AJNR Am J Neuroradiol 2001; 22 (02) 382-388 (PMID: 11156787)
  • 14 Pooh RK, Machida M, Nakamura T. et al. Increased Sylvian fissure angle as early sonographic sign of malformation of cortical development. Ultrasound Obstet Gynecol 2019; 54 (02) 199-206 DOI: 10.1002/uog.20171. (PMID: 30381845)
  • 15 Guibaud L, Selleret L, Larroche JC. et al. Abnormal Sylvian fissure on prenatal cerebral imaging: significance and correlation with neuropathological and postnatal data. Ultrasound Obstet Gynecol 2008; 32 (01) 50-60
  • 16 Quarello E, Stirnemann J, Ville Y. et al. Assessment of fetal Sylvian fissure operculization between 22 and 32 weeks: a subjective approach. Ultrasound Obstet Gynecol 2008; 32 (01) 44-49
  • 17 Alonso I, Borenstein M, Grant G. et al. Depth of brain fissures in normal fetuses by prenatal ultrasound between 19 and 30 weeks of gestation. Ultrasound in Obstetrics & Gynecology 2010; 36 (06) 693-699
  • 18 Toi A, Lister WS, Fong KW. How early are fetal cerebral sulci visible at prenatal ultrasound and what is the normal pattern of early fetal sulcal development?. Ultrasound Obstet Gynecol 2004; 24 (07) 706-715 DOI: 10.1002/uog.1802. (PMID: 15586358)
  • 19 Chen X, Li SL, Luo GY. et al. Ultrasonographic Characteristics of Cortical Sulcus Development in the Human Fetus between 18 and 41 Weeks of Gestation. Chin Med J (Engl) 2017; 130 (08) 920-928
  • 20 Monteagudo A, Timor-Tritsch IE. Development of fetal gyri, sulci and fissures: a transvaginal sonographic study. Ultrasound Obstet Gynecol 1997; 9 (04) 222-228 DOI: 10.1046/j.1469-0705.1997.09040222.x. (PMID: 9168571)
  • 21 Dall’Asta A, Paramasivam G, Basheer SN. et al. How to obtain diagnostic planes of the fetal central nervous system using three-dimensional ultrasound and a context-preserving rendering technology. Am J Obstet Gynecol 2019; 220 (03) 215-229 DOI: 10.1016/j.ajog.2018.11.1088. (PMID: 30447211)
  • 22 Liao Y, Yang Y, Wen H. et al. Abnormal Sylvian fissure at 20–30 weeks as an indicator of malformations of cortical development: role for prenatal whole-genome sequencing. Ultrasound Obstet Gynecol 2022; 59 (04) 552-555 DOI: 10.1002/uog.24771. (PMID: 34542197)
  • 23 Malinger G, Lev D, Lerman-Sagie T. Abnormal sulcation as an early sign for migration disorders. Ultrasound Obstet Gynecol 2004; 24 (07) 704-705 DOI: 10.1002/uog.1795. (PMID: 15586360)
  • 24 Severino M, Geraldo AF, Utz N. et al. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020; 143 (10) 2874-94 DOI: 10.1093/brain/awaa174. (PMID: 32779696)
  • 25 Rizzo G, Abuhamad AZ, Benacerraf BR. et al. Collaborative study on 3-dimensional sonography for the prenatal diagnosis of central nervous system defects. J Ultrasound Med 2011; 30 (07) 1003-1008 DOI: 10.7863/jum.2011.30.7.1003. (PMID: 21705734)
  • 26 Pilu G, Ghi T, Carletti A. et al. Three-dimensional ultrasound examination of the fetal central nervous system. Ultrasound Obstet Gynecol 2007; 30 (02) 233-245 DOI: 10.1002/uog.4072. (PMID: 17659665)
  • 27 Gindes L, Malach S, Weisz B. et al. Measuring the perimeter and area of the Sylvian fissure in fetal brain during normal pregnancies using 3-dimensional ultrasound. Prenat Diagn 2015; 35 (11) 1097-105