Planta Med 2024; 90(01): 38-46
DOI: 10.1055/a-2186-3260
Biological and Pharmacological Activity
Original Papers

New Lupanes from Alstonia scholaris Reducing Uric Acid Level

Bin-Yuan Hu
1   Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
,
Yun-Li Zhao
1   Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
,
Yuan Xu
1   Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
,
Xiao-Na Wang
1   Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
,
Xiao-Dong Luo
1   Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
2   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
› Institutsangaben
Gefördert durch: Yunnan Characteristic Plant Screening and R&D Service CXO Platform 2022YKZY001
Gefördert durch: Scientific and Technological Innovation Team of Yunnan Province 202105AE160006
Gefördert durch: High-level Talent Promotion and Training Project of Kunming 2022SCP003

Abstract

Twelve lupanes including three new compounds named alstoscholarilups A−C (13) were isolated from the leaves of Alstonia scholaris. Their structures were elucidated by spectroscopic analysis and ECD calculation. Structurally, compound 1 with a rare A ring-seco skeleton formed lactone and degraded C-3, while 2 with a 28-nor and 3 with a 29-nor-lupane skeleton supported the phytochemical diversity and novelty of the plant. Pharmacologically, compounds 4, 7, and 10 reduced the serum uric acid (UA) levels of mice significantly.

Supporting Information



Publikationsverlauf

Eingereicht: 19. Juni 2023

Angenommen nach Revision: 28. September 2023

Artikel online veröffentlicht:
19. Oktober 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 El-Tantawy WH. Natural products for the management of hyperuricaemia and gout: A review. Arch Physiol Biochem 2021; 127: 61-72
  • 2 Neogi T, Krasnokutsky S, Pillinger MH. Urate and osteoarthritis: Evidence for a reciprocal relationship. Joint Bone Spine 2019; 86: 576-582
  • 3 Choi WJ, Hong YA, Min JW, Koh ES, Kim HD, Ban TH, Kim YS, Kim YK, Shin SJ, Kim SY, Kim YO, Yang CW, Chang YK. The serum uric acid level is related to the more severe renal histopathology of female IgA nephropathy patients. J Clin Med 2021; 10: 1885
  • 4 Richette P, Bardin T. Gout. Lancet 2010; 375: 318-328
  • 5 Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med 2008; 359: 1811-1821
  • 6 Toyoda Y, Mancikova A, Krylov V, Morimoto K, Pavelcova K, Bohata J, Pavelka K, Pavlikova M, Suzuki H, Matsuo H, Takada T, Stiburkova B. Functional characterization of clinically-relevant rare variants in ABCG2 identified in a gout and hyperuricemia cohort. Cells 2019; 8: 363
  • 7 Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, Yamanashi Y, Kasuga H, Nakashima H, Nakamura T, Takada Y, Kawamura Y, Inoue H, Okada C, Utsumi Y, Ikebuchi Y, Ito K, Nakamura M, Shinohara Y, Hosoyamada M, Sakurai Y, Shinomiya N, Hosoya T, Suzuki H. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 2012; 3: 764
  • 8 Abramowicz M, Zuccotti G, Pflomm JM. Lesinurad/Allopurinol (Duzallo) for gout-associated hyperuricemia. JAMA 2018; 319: 188-189
  • 9 Sheng HM, Sun HB. Synthesis biology and clinical significance of pentacyclic triterpenes: A multi-target approach to prevention and treatment of metabolic and vascular diseases. Nat Prod Rep 2011; 28: 543-593
  • 10 Zhang L, Yuan PH, Yang DZ, Bi YC, Su B, Zhang BX, Wang FQ, Lu Y, Du GH. Purity and uncertainty study of CRM betulin by DSC. Nat Prod Bioprospect 2020; 10: 317-324
  • 11 Yong TQ, Chen SD, Liang DL, Zuo D, Diao X, Deng CL, Wu YN, Hu HP, Xie YZ, Chen DL. Actions of Inonotus obliquus against hyperuricemia through XOD and bioactives screened by molecular modeling. Int J Mol Sci 2018; 19: 3222
  • 12 Zhao ZL, Zhao YS, Zhang YQ, Shi WL, Li XQ, Shyy JYJ, He M, Wang LY. Gout-induced endothelial impairment: the role of SREBP2 transactivation of YAP. FASEB J 2021; 35: e21613
  • 13 Yu HF, Ding CF, Zhang LC, Wei X, Cheng GG, Liu YP, Zhang RP, Luo XD. Alstoscholarisine K, an antimicrobial indole from gall-induced leaves of Alstonia scholaris . Org Lett 2021; 23: 5782-5786
  • 14 Hu BY, Zhao YL, Zhou ZS, Zhu YY, Luo XD. Significant anti-inflammatory aziridine-containing indole alkaloids from the Chinese medicinal plant Alstonia scholaris . Chem Comm (Camb) 2023; 59: 2271-2274
  • 15 Tong XY, Zhao YL, Fu RB, Hu M, Zhang QS, Wu XN, Qu L, Li BJ, Nie J, Hu CY, Yu XL, Xie YH, Luo XD, Huang F. Effects of total alkaloids from Alstonia scholaris (L.) R. Br. on ovalbumin-induced asthma mice. J Ethnopharmacol 2024; 318: 116887
  • 16 Yang XW, Yang CP, Jiang LP, Qin XJ, Liu YP, Shen QS, Chen YB, Luo XD. Indole alkaloids with new skeleton activating neural stem cells. Org Lett 2014; 16: 5808-5811
  • 17 Li R, Zhao YL, Qin F, Zhao Y, Xiao XR, Cao WY, Fan MR, Wang SG, Wu Y, Wang B, Fan CZ, Guo ZN, Yang QN, Zhang WT, Li XG, Li F, Luo XD, Gao R. The clinical population pharmacokinetics, metabolomics and therapeutic analysis of alkaloids from Alstonia scholaris leaves in acute bronchitis patients. Phytomedicine 2022; 98: 153979
  • 18 Gou ZP, Zhao YL, Zhou LL, Wang Y, Shu SQ, Zhu XH, Zheng L, Shen Q, Luo Z, Miao J, Wang YS, Luo XD, Feng P. The safety and tolerability of alkaloids from Alstonia scholaris leaves in healthy Chinese volunteers: A single-centre, randomized, double-blind, placebo-controlled phase I clinical trial. Pharm Biol 2021; 59: 482-491
  • 19 Guo R, Shang JH, Ye RH, Zhao YL, Luo XD. Pharmacological investigation of indole alkaloids from Alstonia scholaris against chronic glomerulonephritis. Phytomedicine 2023; 118: 154958
  • 20 Zhao YL, Pu SB, Qi Y, Wu BF, Shang JH, Liu YP, Hu D, Luo XD. Pharmacological effects of indole alkaloids from Alstonia scholaris (L.) R. Br. on pulmonary fibrosis in vivo . J Ethnopharmacol 2021; 267: 113506
  • 21 Hu BY, Zhao YL, Xiong DS, He YJ, Zhou ZS, Zhu PF, Wang ZJ, Wang YL, Zhao LX, Luo XD. Potent antihyperuricemic triterpenoids based on two unprecedented scaffolds from the leaves of Alstonia scholaris. Org Lett 2021; 23: 4158-4162
  • 22 Hu BY, Zhao YL, Ma DY, Xiang ML, Zhao LX, Luo XD. Anti-hyperuricemic bioactivity of Alstonia scholaris and its bioactive triterpenoids in vivo and in vitro . J Ethnopharmacol 2022; 290: 115049
  • 23 El-Askary HI, El-Olemy MM, Salama MM, Sleem AA, Amer MH. Bioguided isolation of pentacyclic triterpenes from the leaves of Alstonia scholaris (Linn.) R. Br. growing in Egypt. Nat Prod Res 2012; 26: 1755-1758
  • 24 Zehra S, Sanaye MM. Evaluation of anti-urolithiatic potential of leaves of Alstonia scholaris and its isolated pentacyclic triterpenoids in ethylene glycol-induced renal calculi rat model. Indian J Pharm Educ 2021; 55: 232-239
  • 25 Peng XG, Lin Y, Liang JJ, Zhou M, Zhou J, Ruan HL. Triterpenoids from the barks of Juglans hopeiensis . Phytochemistry 2020; 170: 112201
  • 26 Francisco FA, Simonet AM, Esteban MD. Potential allelopathic lupane triterpenes from bioactive fractions of melilotus messanensis . Phytochemistry 1994; 36: 1369-1379
  • 27 Pramanick S, Mandal S, Mukhopadhyay S, Jha S. Allylic hydroxylation through acid catalysed epoxy ring opening of betulinic acid derivatives. Synthetic commun 2005; 35: 2143-2148
  • 28 Huang J, Guo ZH, Cheng P, Sun BH, Gao HY. Three new triterpenoids from Salacia Hainanensis Chun et how showed effective anti-α-glucosidase activity. Phytochem Lett 2012; 5: 432-437
  • 29 He Y, Lei DY, Yang QQ, Qi H, Almira K, Askar D, Jin L, Pan L. Xanthium Orientale subsp. italicum (Moretti) Greuter: Bioassay-guided isolation and its chemical basis of antitumor cytotoxicity. Nat Prod Res 2021; 35: 2433-2437
  • 30 Nishimura K, Fukuda T, Miyase T, Noguchi H, Chen XM. Activity-guided isolation of triterpenoid Acyl CoA Cholesteryl Acyl Transferase (ACAT) inhibitors from Ilex kudincha . J Nat Prod 1999; 62: 1061-1064
  • 31 Hao J, Zhang XL, Zhang P, Liu J, Zhang LY, Sun HB. Efficient access to isomeric 2,3-dihydroxy lupanes: First synthesis of alphitolic acid. Tetrahedron 2009; 65: 7975-7984
  • 32 Hata K, Hori K, Takahashi S. Differentiation-and apoptosis-inducing activities by pentacyclic triterpenes on a mouse melanoma cell line. J Nat Prod 2002; 65: 645-648
  • 33 Monkhe T, Mulholland D, Nicholls G. Triterpenoids from Bersama swinnyi . Phytochemistry 1998; 49: 1819-1820
  • 34 Lee CK. A new norlupene from the leaves of Melaleuca leucadendron . J Nat Prod 1998; 61: 375-376
  • 35 Chen WD, Zhao YL, Sun WJ, He YJ, Liu YP, Jin Q, Yang XW, Luo XD. “Kidney Tea” and its bioactive secondary metabolites for treatment of gout. J Agric Food Chem 2020; 68: 9131-9138